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George Boole’s method and Eigenlogic
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George Boole :  truth values  “ 0 ” and “ 1 ” 
George Boole in 1847 [a] gave a mathematical symbolism for logical propositions.

The conjunction (AND) of 2 logical propositions X and Y is the product: 𝑥𝑦 = 𝑦𝑥
𝑥 (“elective” symbol) acts as a selection operator on 𝑦 (also 𝑦 on 𝑥)

applied on itself the proposition does not change resulting in: 𝑥2 = 𝑥

this equation  was considered by George Boole the “fundamental law of thought”! [b]

the only solutions of this equation are the numbres 0 and 1 representing  “False" and “True“ respectively.

Same equation written as: 𝑥 1 − 𝑥 = 0 the logical law of non contradiction

showing that 𝑥 is an idempotent symbol (projector) orthogonal to 1 − 𝑥 (its complement)

one also has 𝑥 + 1 − 𝑥 = 1 the logical law of the excluded middle

The method was extended by G. Boole in the continuous interval [0,1] to give one of the first mathematical 
formalizations of probabilities in [b].

4[b] Boole, G. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, (1854)

[a] Boole, G. The Mathematical Analysis of Logic. Being an Essay To a Calculus of Deductive Reasoning, (1847)



the birth of truth tables : Pierce, Wittgenstein and Post
(excerpts from [a])

“Truth tables were introduced by Charles 
Sanders Peirce (1839-1914) in the early 
1880's [b] which attracted little attention 
at the time”
“Truth tables were rediscovered and 
tautologies discovered, simultaneously and 
independently by Ludwig Wittgenstein
(1889-1951) [c] and by Emil Leon Post
(1897-1954) [d] ”

Post also established the consistency and 
completeness of propositional calculus.
Logical truth tables  (semantics ⊨) are 
axiomatic at the same level as logical 
connective canonical forms (syntax ⊢).

Wittgenstein’s Tractatus

[c] L. Wittgenstein, Tractatus Logico-Philosophicus, Wien (1918), translated and published in Cambridge, (1921).

[d] E.L. Post, Introduction to a General theory of Elementary Propositions, American J. of Mathematics 43: 163–185, (1921).

[b] C.S. Peirce, On the Algebra of Logic: A Contribution to the Philosophy of Notation, J. of Mathematics, Vol. 7 , (1885).

[a] K. Menger, Reminiscences of the Vienna Circle and the Mathemathical Colloquium, Springer 1994, (1942). 
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using Boole’s method for generating logical functions [*]
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Boole’s idempotent logical functions 𝑓 ∈ {0,1} are expressed in an arithmetical form (not modulo 2)

a logical function of two arguments is expressed by a bilinear form of the symbols 𝑥 and 𝑦 and the truth values 𝑓(𝑎, 𝑏)

𝑓 = 𝑓 0,0 1 − 𝑥 1 − 𝑦 + 𝑓 0,1 1 − 𝑥 𝑦 + 𝑓 1,0 𝑥 1 − 𝑦 + 𝑓 1,1 𝑥𝑦

Negation is the complementation by subtracting 𝑓 from the number 1:  𝑓 = 1 − 𝑓

generalizes to any number of arguments (arity)

[*] Toffano, Z. Eigenlogic in the Spirit of 
George Boole. Logica Universalis, Birkhäuser-
Springer, 14, 175–207 (2020). 



logical forms and diagrams

Elementary propositions:   A , B

SOP (Sum Of Products) canonical form
disjunction (∨, OR) of conjunctions (∧, AND) 
Conjunction, AND : A ∧ B
in arithmetical form: 𝑎𝑏

Disjunction, OR : A ∨ B = ( A ∧ B) ∨ (A ∧  B) ∨ (A ∧ B)
in arithmetical form: 1 − 𝑎 𝑏 + 𝑎 1 − 𝑏 + 𝑎𝑏 = 𝑎 + 𝑏 − 𝑎𝑏

Exclusive disjunction, XOR : A⨁B =  A ∧ B ∨ A ∧  B
in arithmetical form: 1 − 𝑎 𝑏 + 𝑎 1 − 𝑏 = 𝑎 + 𝑏 − 2𝑎𝑏

Reed-Muller canonical form
exclusive disjunction (⨁, XOR) of conjunctions (∧, AND)
e.g. Disjunction, OR : A ∨ B = A⨁B ∨ A ∧ B = A⨁B⨁ A ∧ B

De Morgan logical duality
 A ∧  B = A ∨ B

in arithmetical form: 1 − 𝑎 1 − 𝑏 = 1 − 𝑎 + 𝑏 − 𝑎𝑏 = 1 − 𝑎 − 𝑏 + 𝑎𝑏

A

B
A ∧ B

 A ∧ B

A ∧  B

 A ∧  B

A ∨ B

A⨁B

BA

A ∧ B
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Venn Diagrams

John Venn following exactly Boole’s arithmetical 
approach illustrated all logical connectives in his 
Venn diagrams (1881) [*]

The diagrams have a direct correspondence with set 
theory by the operations of Intersection ∩ and Union 
∪ of sets (here surfaces).

Are widely used in probability theory and 
information theory for the illustrations of different 
representations (independent, relative, conditional…)

FFFF TFFF FTFF TTFF

FFTF TFTF FTTF TTTF

FFFT TFFT FTFT TTFT

FFTT TFTT FTTT TTTT

FF TF FT TT

False  ¬A A True T

False 

XOR    A⊕B

¬A

¬B

NOR    ¬(A∨B)

NAND    ¬(A∧B)

OR     A∨B

EQ     A≡BAND     A∧B

True T

B

A

A ⇒ B

B⇒ A

B⇏ A

A ⇏ B
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[*] Venn, J. Symbolic Logic. 
Macmillan and Company, London UK (1881)



Eigenlogic definition

Eigenlogic: a logical method using operators in linear algebra [a,b,c]

logical operators    ⟺ logical connectives

eigenvalues of logical operators    ⟺ truth values

eigenvectors of logical operators     ⟺ interpretations (propositional cases)

Eigenlogic uses the Kronecker product to scale-up to more logical arguments (arity).

A single seed operator generates the entire logic.

9

[b] Toffano, Z., Eigenlogic in the Spirit of George Boole. Logica Universalis, Birkhäuser-Springer, 14, 175–207. (2020) 

[a] Dubois, F., Toffano, Z., Eigenlogic: A Quantum View for Multiple-Valued and Fuzzy Systems,
in: de Barros J., Coecke B., Pothos E. (eds) Quantum Interaction. QI 2016. Lecture Notes in Computer Science, vol 10106. Springer. (2017)

[c] Toffano Z, Dubois F., Adapting Logic to Physics: The Quantum-Like Eigenlogic Program. Entropy. ; 22(2):139. (2020)



Binary Eigenlogic : {0,1} and  {+1,-1}
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Eigenlogic: one-qubit Boolean logical operators 

The qubits   |1 and  |0 define the computational basis (the “𝑧” base):    |0 =
1
0

,   |1 =
0
1

eigenvectors of the Pauli matrix 𝝈𝑧 =
+1 0
0 −1

= diag +1,−1

Choice of the logical seed projector 𝜫 =  |1  1| (density matrix of qubit  |1 )

Logical operators as a linear development (equivalent to Boole’s method) gives the spectral decomposition :

𝑭 = 𝑓 0 (𝕀 − 𝜫) + 𝑓 1 𝜫 =
𝑓(0) 0
0 𝑓(1)

= diag(𝑓 0 , 𝑓 1 )

the cofactors 𝑓 0 and 𝑓 1 are the eigenvalues i.e. the truth values of the logical connective.

Negation is obtained by complementation (substracting from the identity operator) :   𝑭 = 𝕀 − 𝑭

other choices of logical bases are possible: e.g. the “𝑥” base with the seed  𝜫− =  | −  −| ,   | − =
1

2
 |0 −  |1
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Eigenlogic: two-qubit Boolean logical operators

Making use of the Kronecker product⨂ to scale up to more arguments (as done in quantum computing)

Scaling to 2-qubit logical operators with the 4 basis projection operators (pure quantum-state density matrices):

𝝆11 =  |11  11| = 𝜫⨂𝜫 ; 𝝆10 =  |10  10| = 𝜫⨂(𝕀 − 𝜫) ;
𝝆01 =  |01  01| = (𝕀 − 𝜫)⨂𝜫 ; 𝝆00 =  |00  00| = (𝕀 − 𝜫)⨂(𝕀 − 𝜫)

All 16 logical arity-2 operators are directly obtained by the bilinear development (G. Boole’s method)

Giving the spectral decomposition of the operator :

𝑭 = 𝑓 0,0  |00  00| + 𝑓 0,1  |01  01| + 𝑓 1,0  |10  10| + 𝑓 1,1  |11  11| =

= 𝑓 0,0 (𝕀 − 𝜫)⨂(𝕀 − 𝜫) + 𝑓 0,1 (𝕀 − 𝜫)⨂𝜫+ 𝑓 1,0 𝜫⨂(𝕀 − 𝜫) + 𝑓 1,1 𝜫⨂𝜫

= diag(𝑓 0,0 , 𝑓 0,1 , 𝑓 1,0 , 𝑓 1,1 )

the truth values are 𝑓 𝑥, 𝑦 ∈ {0,1}
12



Eigenlogic elementary propositions and logical connectives
In propositional logic one defines the elementary (or atomic) propositions P and Q in a well-formed-formula.

From the elementary propositions P and Q all other compound propositions can be derived.

Atomic propositions In Eigenlogic correspond to the extensions of the seed projector 𝜫 with the identity 𝕀 operator:

𝑷 = 𝜫⨂𝕀 = diag(0,0,1,1) ,         𝑸 = 𝕀⨂𝜫 = diag 0,1,0,1

directly from 𝑷 and 𝑸 all other compound logical operators are derived:

Conjunction (AND, ∧) 𝑭AND = 𝑭P∧Q = 𝑷 ∙ 𝑸 = 𝜫⨂𝜫 = diag 0,0,0,1

Disjunction (OR, ∨) 𝑭OR = 𝑭P∨Q = 𝑷 + 𝑸− 𝑷 ∙ 𝑸 = diag 0,1,1,1

Negation is simply obtained by subtracting from the identity operator 𝕀 :

𝑭NAND = 𝕀 − 𝑭AND = diag 1,1,1,0 ;  Equivalence    𝑭⟺ = 𝕀 − 𝑭XOR = diag 1,0,0,1

Similar expressions were found by V. Aggarwal and R. Calderbank used for Quantum Error Correcting Codes in [*]

13

[*] Aggarwal, V., Calderbank, R. Boolean Functions, Projection Operators, and Quantum Error Correcting Codes. In: IEEE Proceedings ISIT 
2007 (International Symposium Information Theory), Nice, France, pp. 2091–2095 (2007)



changing the paradigm: using values {+1,−1} instead of {0, 1}

The polar alphabet +1,−1 has the following correspondence with the Booleans 0, 1 : 

+1 (spin up)   ↔ 0 :  “False”   ; −1 (spin down)  ↔ 1 :  “True”

this binary reversible logic alphabet is often used (implicitly) in Ising models and neural networks.

considering 𝑥 ∈ 0,1 one has     𝑢 ∈ +1,−1 if and only if 𝑢 = 1 − 2𝑥 = (−1)𝑥= 𝑒𝑖𝜋𝑥

for operators the equivalent form is the Householder Transform : 

𝑮 = 𝕀 − 2𝑭 = − 1 𝑭 = 𝑒𝑖𝜋𝑭 = 𝑒𝑖
𝜋

2𝑒−𝑖
𝜋

2
𝑮

it is an isomorphism:

projection operators 𝑭 (eigenvalues 0,1 )      ⇌ reversible involution operators 𝑮 (eigenvalues +1,−1 )

𝑮 and 𝑭 have the same eigenvectors

Comparable approach in “Quantum  Boolean Functions” [*] proposed by A. Montanaro and T.J. Osborne.

14[*] Montanaro, A., Osborne, T.J., Quantum Boolean Functions, Chicago Journal of Theoretical Computer Science, 1,  pp. 1–45 (2010)



binary operator 
truth tables
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logical connective 

for P, Q

truth table {F, T}:  

{0, 1} or { + 1,  − 1}

{0, 1}  projection

logical  operator

{ + 1,  − 1}  involution

logical  operator

False F F F F F 0  + I

NOR F F F T I − P − Q + PQ (1/2) (+I – U – V − UV)

P ⇍ Q F F T F Q − PQ (1/2) (+I − U + V+UV)

¬P F F T T I − P  − U

P ⇏ Q F T F F P − PQ (1/2) ( + I + U − V + UV)

¬Q F T F T I − Q  − V

XOR ; P⊕Q F T T F P + Q − 2 PQ UV = Z⊗Z

NAND ; P↑Q F T T T I − PQ (1/2) ( − I − U − V + UV)

AND ; P∧Q T F F F PQ = Π⊗Π (1/2) ( + I + U + V − UV)

P ≡ Q T F F T I − P − Q + 2 PQ  − UV

Q T F T F Q = I⊗Π V = I⊗Z

P ⇒ Q T F T T I − P + PQ (1/2) (  − I − U + V − UV)

P T T F F P = Π⊗I U = Z⊗I

P ⇐ Q T T F T I − Q + PQ (1/2) (  − I + U − V − UV)

OR ; P∨Q T T T F P + Q − PQ (1/2) (  − I + U + V + UV)

True T T T T T I  − I

truth tables show
valuations: ⊨ in semantics

logical connectives are used for
deductions: ⊢ in syntax

consistency (if ⊢ A then ⊨ A)
and
completeness (if ⊨ A then ⊢ A)
are equivalent for the 
propositional calculus : 
completeness theorem

Is not valid for 1st order logic as 
shown by Gödel’s 
incompleteness theorem
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Many-valued and Fuzzy Eigenlogic



More than binary: many-valued logic

17[b] Emil Post, Introduction to a General theory of Elementary Propositions, American Journal of Mathematics 43: 163–185 (1921)
[a] Jan Łukasiewicz, On three-valued logic, Selected Works, North-Holland, (1970), pp. 87–88 (1921) 

Many-valued logic was proposed independently by J. Łukasiewicz [a] and  E.L. Post [b] in 1921
born nearly simultaneously to the new mathematical theory of quantum mechanics.

With many-valued logic higher information densities can be achieved:
the information density in a 𝑚-valued system is log2𝑚 times larger than in a binary system

This logic has interested engineers involved in various aspects of information technology  for over 40 years.

Used in HDL (Hardware Description Language) for the simulation of digital circuits and their synthesis.

Standards have been established, for example IEEE 1364MVL :

The total number of logical connectives for a system of 𝑚 values and 𝑛 arguments is 𝑚𝑚
𝑛

.
with 2 values (binary) for arity-1 : 22

1
= 4 and for arity-2 :  22

2
= 16

with 3 values (ternary) for arity-1 : ​​33
1
= 27 and for arity-2 :  33

2
= 19683

The number of connectives has a doubly exponential increase with the number of values 𝑚 and arity-𝑛



Cayley-Hamilton theorem and many-valued Eigenlogic
The Eigenlogic seed operator 𝜦 can be any operator with𝑚 non-degenerate eigenvalues 𝜆𝑖 ,

using Lagrange matrix interpolation the projector of each eigenstate is given by:

𝜆𝑖 >< 𝜆𝑖 = 𝜫𝜆𝑖 𝜦 =  

𝑗=1,𝑗≠𝑖

𝑚
𝜦 − 𝜆𝑗𝕀

𝜆𝑖 − 𝜆𝑗

is a polynomial in 𝜦 up to the power𝑚 – 1 and is represented by a𝑚 × 𝑚 square matrix.

The Cayley–Hamilton theorem says that any finite matrix is the solution of its own characteristic equation
showing that the above development is unique.

A logical operator for arity-1 is then given by the spectral decomposition with truth-values 𝑓 𝜆𝑗 ∈ {…𝜆𝑖 …}:

𝑭
𝐿
=  𝑗=1
𝑚 𝑓 𝜆𝑗 𝜫𝜆𝑗 𝜦

Scaling to higher arity is obtained by extending the seed operator 𝜦 with the identity.

18



logic of angular momentum

Balanced ternary logic equivalent to Orbital Angular Momentum 
(OAM) with  ℓ = 1.
The 𝑧 component of the orbital angular momentum operator :

𝑳𝑧 = ℏ𝜦 = ℏ
1 0 0
0 0 0
0 0 −1

= 𝑑𝑖𝑎𝑔(+1,0, −1)

the three rank-1 projectors obtained by interpolation : 
𝜫+1 =

1

2
𝜦(𝜦 + 𝕀) ,    𝜫0 = 𝕀 − 𝜦

𝟐 ,    𝜫−1 =
1

2
𝜦(𝜦 − 𝕀)

For arity-2 𝑼 and 𝑽 are then defined as usual in Eigenlogic :

𝑼 = 𝜦⊗ 𝕀 ,   𝑽 = 𝕀⊗𝜦

19

Min U \\ V F N T 

False  ≡  +1 +1 +1 +1 

Neutral  ≡  0 +1 0 0 

True  ≡   − 1 +1 0  − 1 

Max U \\ V F N T 

False  ≡  +1 +1 0  − 1 

Neutral  ≡  0 0 0  − 1 

True  ≡   − 1  −  1  − 1  − 1 

Spin Family (Bosons ℓ and Fermions 𝒔) 
(© Julian Voss-Andreae. Photo: Dan Kvitka.)

ℓ = 𝟏
𝒔 = 𝟏/𝟐

ℓ = 𝟐
𝒔 = 𝟑/𝟐

𝒔 = 𝟓/𝟐

In many-valued logic the Min and Max are the equivalent of AND and OR :

𝑴𝒊𝒏(𝑼, 𝑽) =
𝟏

𝟐
(𝑼 + 𝑽 + 𝑼

2

+ 𝑽
2

− 𝑼 ⋅ 𝑽 − 𝑼
2

⋅ 𝑽
2

) = 𝑑𝑖𝑎𝑔(1,1,1,1,0,0, 1,0, −1)

𝑴𝒂𝒙 𝑼, 𝑽 =
𝟏

𝟐
𝑼+ 𝑽 − 𝑼

2

− 𝑽
2

+ 𝑼 ⋅ 𝑽 + 𝑼
2

⋅ 𝑽
2

= 𝑑𝑖𝑎𝑔 1,0, −1,0,0, −1, −1, −1, −1

Logical observables can be identified with 
Quantum Angular Momentum



fuzzy Eigenlogic: when the logical input is not an eigenstate

The quantum principle of superposition of states finds a counterpart in the degree of membership to fuzzy sets:
the mean value of an Eigenlogic projection operator 𝑭 gives a  fuzzy measure when the quantum state  |𝜓 is not 
an eigenstate of 𝑭. Whereas a  crisp measure 0 or 1 is obtained only for the eigenstates of 𝑭.

The Eigenlogic fuzzy membership function is:          𝜇 =  𝜓|𝑭  |𝜓 with  0 ≤ 𝜇 ≤ 1

Fuzziness can be related to the probabilistic nature of quantum measurements (Born rule).
For a projective observable 𝑷measured on a quantum state  |𝜓 we have the probability (Gleason’s theorem [b]):

𝑝  |𝜓 =  𝜓|𝑷  |𝜓 = 𝑇𝑟(𝝆 ∙ 𝑷)          with        𝝆 = |𝜓  𝜓| the “density matrix”. 

A projective observable corresponds to a logical projection operator in Eigenlogic.

20

[a] Zadeh, L.A.: Fuzzy sets. Information and Control, 8 (3), 338-353, (1965)

[b] A. M. Gleason, Measures on the closed subspaces of a Hilbert space. Indiana U. Mathematics Journal, 6, 885–893, (1957) 

In 1965 Lotfi Zadeh [a] proposed fuzzy logic to describe partial truths, truth values ​​can take 
values ​​between 0 and 1.
Fuzzy logic is grounded on the theory of fuzzy sets.
The relation between the theory of fuzzy sets and the probability theory has been debated 
for a long time.



Eigenlogic fuzzy conjunction, disjunction and material implication
A generic qubit state on the Bloch sphere:  |𝜙 = sin𝜃

2
 |0 + 𝑒𝑖𝜑cos𝜃

2
 |1 , 

The quantum average (Born rule) of the logical projector is:  𝜇(A) =  𝜙|𝜫  |𝜙 = cos2𝜃
2

and the complement: 𝜇( A) =  𝜙|(𝕀 − 𝜫  )|𝜙 = sin2𝜃
2
= 1 − cos2𝜃

2
= 1 − 𝜇(A)

which satisfies the condition of fuzzy logic for the complement (negation) of a fuzzy set.

The fuzzy membership function for 𝑷 and 𝑸 by performing the quantum average on :

 |𝜓 =  |𝜙𝑝 ⨂  |𝜙𝑞 with    𝑝 = cos
𝜃𝑝

2

2
and     𝑞 = cos

𝜃𝑞

2

2

𝜇 P =  𝜓|𝑷  |𝜓 = 𝑝(1 − 𝑞) + 𝑝 ⋅ 𝑞 = 𝑝 ;      𝜇(Q) =  𝜓|𝑸  |𝜓 = 𝑞

The fuzzy Eigenlogic measure of logical operators are :
Conjunction (AND)  𝜇(P ∧ Q) =  𝜓|𝑷 ⋅ 𝑸  |𝜓 =  𝜓|𝜫⨂𝜫  |𝜓 = 𝑝 ⋅ 𝑞 = 𝜇(P) ⋅ 𝜇(Q)
Disjunction (OR) 𝜇 P ∨ Q = 𝑝 + 𝑞 − 𝑝 ⋅ 𝑞 = 𝜇 P + 𝜇 Q − 𝜇 P ⋅ 𝜇 Q
Material Implication 𝜇 P ⇒ Q = 1 − 𝑝 + 𝑝 ⋅ 𝑞 = 1 − 𝜇 P + 𝜇(P) ⋅ 𝜇(Q)

In the language of fuzzy logic these are Product t-norms (triangular norm as a product for the fuzzy conjunction)

The disjunction 𝜇 P ∨ Q corresponds to the inclusion-exclusion expression for probabilities due to H. Poincaré [*]

21

 | − 𝑖

 |0

 |1

 | + 𝑖

 | +

 | −

 |𝜙

𝜑

𝜃

Bloch sphere in Hilbert space

[*] Poincaré, H. Calcul des Probabilités; Gauthier-Villars: Paris, France, 1912
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Logic with operators and quantum physics



operators in Logic
In 1847 G. Boole uses symbols (elective) that act as idempotent operators
less known: in 1848 in [a], he gave a logical interpretation of unitary quaternions.

C. S. Pierce used matrices to build his logical formalism at the end of the XIXth century.

In 1921 L. Wittgenstein states in the Tractatus [b] that all propositions can be derived by 
repeated application of the operator 𝑵 to the elementary propositions.

In 1924, M. Schönfinkel [c] introduced an operator based method in logic.
H. Curry named it successively  Combinatory Logic and improved the method in [d] which 
lead successively to lambda calculus introduced A. Church.

In 1943 E.L. Post [e] created a string-manipulation system (Post production system) and 
proved the remarkable Normal-form Theorem 𝑔$ → $ℎ

Boolean logical functions as used nowadays in digital circuits were introduced by C.E. 
Shannon in his Master’s thesis in 1938 [f] to represent logical binary switching functions.

23

[a] Boole, G. Notes on quaternions. Philos. Mag, 33, 278–280, (1848)

[c] Schönfinkel, M. Über die Bausteine der mathematischen Logik. Math. Ann, 92, 305–316. (1924)
[b] Wittgenstein, L. Tractatus Logico-Philosophicus, prop. 6.001, Routledge (1921)

[d] Curry, H.B.; Feys, R. Combinatory Logic; North-Holland Co: Amsterdam, The Netherlands, (1958)

[f] Shannon, C.E. A symbolic analysis of relay and switching circuits. Trans. AIEE, 57(12), 713–723 (1938)
[e] Post, E. Formal Reductions of the General Combinatorial Decision Problem, American Journal of Mathematics 65 (2), 197-215. (1943)



why adapting logic to physics ?
Logic: greek word logos, means both speech and reason,

Logic defines languages whose syntax constructs formal languages and whose semantics interprets them.

Syntax should have a link with the structure of Physics (symmetry, geometry, particles, waves…)

Semantics should correspond to measurement in Physics (values: discrete, rational, complex, random…)

Looking for more “physical” representations of logic. How ?

Different possibilities:

• Exploiting Boolean logic {0,1} by operators (quantum logic, quantum computing, …)

• Using alternative binary logical values, negative numbers e.g. {−1,+1}: spin, Ising model, neural networks…

• Using many-valued logical values: Qudits, Fourier Transform,…

• Using fuzzy logic: continuous values, quantum probabilistic interpretation…

• Representing the logic by operators instead of functions to handle with noncommutativity and reversibility
24



non-distributive “quantum propositions”

Difficulty of explaining quantum experiments by the means of propositional logic

For the “double slit experiment” three propositions: 
prop. 𝐴 : “the electron is detected at the point 𝑥” 

prop. B: “the electron went through slit 1” 
prop. C: “the electron went through slit 2”

This experimental configuration does not verify the distributive  property of classical propositional logic:

𝐴 ∧ 𝐵 ∨ 𝐶 ≢ 𝐴 ∧ 𝐵 ∨ 𝐴 ∧ 𝐶

this has motivated the research on more “adapted” logical systems.

from: “The Feynman Lectures on Physics”, 
vol. III, p. 1-2, Addison Wesley (1965)



quantum logic : projections as propositions
M. H. Stone gave the conditions for operations on projectors and commutativity [a]
and established that each binary logical proposition corresponds by duality to the set 
of all its true valuations (Stone Duality).

J. von Neumann considered measurement projection operators as propositions in 
1932 [b]
and also stated that a quantum state  |𝜓 can be represented by a density matrix
(rank-1  projection operator) :

𝝆 =  |𝜓  𝜓|

Quantum Logic proposed by G. Birkhoff and J. von Neumann in 1936 [c] suggested 
the replacement of Boolean algebras with the lattice of closed subspaces of a (finite) 
Hilbert space.

based on projection measurements it is a non-Boolean logic and fails to meet 
distributive properties as expected by quantum mechanics.
Problem: no satisfying way to do implication
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[a] Marshall Harvey Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis, p.70: “Projections”, (1932) 

[b] John von Neumann. Mathematical Foundations of Quantum Mechanics, Eng. Transl. (1955), p.249: “Projectors as Propositions”, (1932)

[c] Garret Birkhoff, John von Neumann, The Logic of Quantum Mechanics. The Annals of Mathematics, 2nd Ser., 37 (4), 823-843 (1936)

G. Birkhoff J. Von Neumann

M.H. Stone
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trying to classify Eigenlogic 

Following the classification of the algebraic hierarchy of logics proposed Andreas de Vries [*].

Eigenlogic encompassing Boolean, many-valued, fuzzy, quantum and first order could fit into this diagram

[*] A. de Vries, Algebraic hierarchy of logics unifying fuzzy logic and quantum logic, arXiv:0707.2161 (2007) 
and in Quantum Computation, chap 13 Quantum Logic Ed. Books on Demand (2012) 



debate around traditional quantum logic

[b] M.L. Dalla Chiara, R. Giuntini, R. Leporini, G. Sergioli, Quantum Computation and Logic—How Quantum Computers Have Inspired Logical 
Investigations, Trends in Logic (Book 48); Springer: Berlin/Heidelberg, Germany (2018)

Bitrkhoff and von Neumann quantum logic was much debated with many promoters but also detractors.

It is still not considered an “operational tool” for quantum computing

An alternative interpretation named geometry of interaction, in contrast to quantum logic, was proposed by the 
French logician Jean-Yves Girard stating in [a]:

“The idea would be to revisit logic in relation with this phenomenon ignored, despised, by logicians – who treated 
it with contempt through their calamitous quantum logic – quantum physics. To imagine foundations, if not 
«quantum», at least in a quantum spirit: proportionately speaking, something of the sort Alain Connes is doing 
with non-commutative geometry. That is the project of the day, enough to be kept busy for a while! Which topsy-
turvies the usual relation logic/quantum: instead of interpreting quantum in logic, one tries the opposite.”

A development of quantum logic has been proposed recently, inspired by quantum computing research, leading 
to the quantum computational logic approach [b] by Maria Luisa Dalla Chiara et al. where any language formula 
in logic can be considered as a compact logical description of a quantum circuit.

[a] Jen-Yves Girard, The Blind Spot: Lectures on Logic, p. 11, European Mathematical Society (2011)



Eigenlogic is different from quantum logic

In Eigenlogic the extension of the seed operator 𝜫 with the identity operator 𝕀
(as is done in quantum mechanics for example for the composition of two spins ½ operators)

ensures the independence of the elementary propositions represented by operators 𝑷 and 𝑸

𝑷 = 𝜫⨂𝕀 ;         𝑸 = 𝕀⨂𝜫

this is a major difference with traditional quantum logic !

In Quantum Logic atomic propositions are represented by pure state density matrices (rank-1 projection operators).
In Eigenlogic the atomic propositions 𝑷 and 𝑸 are not rank-1 projection operators

For example considering the density matrix of the quantum state  |11 : 𝝆11 =  |11  11| = 𝜫⨂𝜫

The operator corresponds in Eigenlogic to a conjunction (compound proposition)

𝑭AND = 𝑷 ∙ 𝑸 = 𝜫⨂𝜫 =  |11  11| = 𝝆11

conjunction is not a logical elementary proposition
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Eigenlogic syntax-semantic duality and non-commutativity

For the logical alphabet +1,−1

considering the 2 eigenstates  | ± 𝑧 of the Pauli operator 𝝈𝑧 with  eigenvalues ±1

and using he anti-commutativity of the Pauli operators: 𝝈𝑥 ∙ 𝝈𝑧 = −𝝈𝑧 ∙ 𝝈𝑥

𝝈𝑥 ⋅ 𝝈𝑧  | ± 𝑧 = ±1 𝝈𝑥  | ± 𝑧 = −𝝈𝑧 ⋅ 𝝈𝑥  | ± 𝑧 gives         𝝈𝑧 𝝈𝑥  | ± 𝑧 = ∓1 𝝈𝑥  | ± 𝑧

so (𝝈𝑥| ± 𝑧 >) are eigenstates of 𝝈𝑧 with eigenvalues ∓1 and correspond to the eigenstates  | ∓ 𝑧 )

Identifying  | + 𝑧 with qubit  |0 and  | − 𝑧 with qubit  |1 gives : 𝝈𝑥  |0 =  |1 and         𝝈𝑥  |1 =  |0

this operation corresponds to logical binary negation.

So for these operators the basic logical operation of binary negation is a consequence of anti-commutativity

In this very simple example using the Pauli matrices as Eigenlogic operators, one has simultaneously:

• a semantic representation by the eigenstructure (eigenvalues ±1 and eigenvectors | ± 𝑧 >) of Pauli matrix 𝝈𝑧

• a syntactic representation by a permutation operation represented by Pauli matrix 𝝈𝑥. 31



syntax and semantics for many-valued operators (qudits)

The quantum state logical complementation can be generalized for a 𝑑-dimensional multi-level system (qudit)

using the generalized Pauli operators given by the Weyl-Heisenberg pairs 𝑿𝑑 and 𝒁𝑑

𝒁𝑑  |𝑗 = 𝜔𝑑
𝑗  |𝑗 with 𝜔𝑑 = 𝑒

𝑖
2𝜋

𝑑 ;          𝑿𝑑  |𝑗 =  |𝑗 + 1 with     𝒁𝑑
𝑑 = 𝑿𝑑

𝑑 = 𝕀𝑑

𝑿𝑑 and 𝒁𝑑 possess the same eigenvalues and verify : 𝒁𝑑 ⋅ 𝑿𝑑 = 𝜔𝑑 𝑿𝑑 ⋅ 𝒁𝑑

the action of the shift operator 𝑿𝑑 on the state  |𝑗 , which is an eigenstate of 𝒁𝑑, gives the state  |𝑗 + 1
so by applying successively this operator one can generate all the other states of the basis.

The semantics is here represented by the eigenstructue of 𝒁𝑑, the eigenvalues 𝜔𝑑 are the 𝑑th roots of unity

The syntax is represented by 𝑿𝑑 corresponding to a many-valued negation as expressed by E.L. Post in 1921.

The transformation from 𝒁𝑑 to 𝑿𝑑 is the Discrete Fourier Transform operator 𝑸𝑭𝑻𝑑 (Quantum Fourier Transform)

𝑸𝑭𝑻𝑑 𝑖𝑗 =
1

𝑑
𝜔𝑑
𝑖𝑗 ; 𝑸𝑭𝑻𝑑

4 = 𝕀𝑑 ; 𝑸𝑭𝑻𝑑
−1 ⋅ 𝒁𝑑 ⋅ 𝑸𝑭𝑻𝑑 = 𝑿𝑑

The Quantum Fourier Transform can be seen as a mediator between logical syntax and logical semantics.
32



towards first-order Eigenlogic

Using two maximally incompatible logical families with logical eigensystems associated to the 𝑿 and 𝒁
gates (resp. the 𝝈𝑥 and 𝝈𝑧 Pauli operators) one gets an interesting outlook:

the quantum Grover amplification gate used in the Grover algorithm, corresponds to the multi-qubit 
involution Eigenlogic negated disjunction operator NOR in the X system.

This operator can be interpreted in the 𝒁 system as a predicative logical existential connective ∃.

In the language of first order logic with a 3-qubit phase oracle the Grover circuit operates the following 
logical proposition:

∃𝑎 𝑃 𝑎 ≡ ¬ 𝑃𝑋 ∨ 𝑄𝑋∨ 𝑅𝑋 [𝑃𝑍 ∧ 𝑄𝑍 ∧ 𝑅𝑍]

A justification can be found in Herbrand’s fundamental theorem [*] that provides a constructive 
characterization of derivability in first-order predicate logic by means of propositional (sentential) logic.
.

[*] J. Herbrand, Recherches sur la théorie de la démonstration,  Thèses présentées à la faculté des sciences de Paris, Paris, (1930).



quantum-like Combinatory Logic
Moses Schönfinkel [a] introduced a method in logic named Combinatory Logic, this was part of the Hilbert program 
aimed to formulate all the fields of mathematics in a consistent logic system.

Haskell Curry successively improved and completed the research [b]. This led to the development of functional 
programming languages such as Haskell, and Erlang.

Combinatory logic uses abstract operators (combinators) to compose and to transform operators and arguments.

It permits to translate first order logic into expressions without variables using only combinators without the need of 
the universal quantifier ∀ and the existential quantifier ∃.

Alessandra di Pierro, in [c] considers that “…reversible combinatory logic can in principle be used for a … translation of 
classical into quantum computation.”

A tentative approach could consist in identifying the different operations of substitution, elimination, permutation, 
etc., with equivalent operations obtained using quantum gates.

tricks in q. computation could be used: 𝑪𝑍 ⋅ 𝑿⊗ 𝒁 ⋅ 𝑪𝑍 = 𝑿⊗ 𝕀2 or     𝑼swap ⋅ 𝑷⊗𝑸 ⋅ 𝑼swap = 𝑸⊗𝑷

[c] A. Di Pierro, On Reversible Combinatory Logic, Electron. Notes Theor. Comput. Sci. 135, 25–35 (2006)

[a] Schönfinkel, M. Über die Bausteine der mathematischen Logik. Math. Ann, 92, 305–316. (1924)

[b] H.B. Curry, Combinatory Logic, North-Holland Co: Amsterdam, (1958)
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correlations of 2 quantum particles: CHSH Bell-inequality [*]

Local properties (𝐴 = ±1, 𝐴’ = ±1, 𝐵 = ±1, 𝐵’ = ±1)

in all 16 cases (deterministic) the expression: 𝐴𝐵 + 𝐴𝐵’ + 𝐴’𝐵 − 𝐴’𝐵’ = 𝐴(𝐵 + 𝐵’) + 𝐴’(𝐵 − 𝐵’) = ±2

CHSH-Bell inequality requires 16 measurements giving (average on a great number of measurements):
𝑆 = | < 𝐴𝐵 + 𝐴𝐵’ + 𝐴’𝐵 − 𝐴’𝐵’ > | ≤ 2

But Quantum Mechanics allows:   2 < 𝑆 ≤ 2√2 = 2.83

so violates the CHSH Inequality > 2 !

A CHSH “Bell experiment”

Source
Alice’s set {𝐴, 𝐴’} Bob’s set {𝐵, 𝐵’}

𝐴 = ±1

𝐴’ = ±1

𝐵 = ±1

𝐵’ = ±1

[*] J.F. Clauser; M.A. Horne; A. Shimony; R.A. Holt, 
Proposed experiment to test local hidden-variable 
theories, Phys. Rev. Lett., 23 (15): 880–4, (1969)
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The CHSH Bell inequality and probabilities
The CHSH Bell inequality is expressed with the Pauli spin operators 𝝈𝑖 along the 4 measurement directions 

The CHSH measurement operator is then : 𝑪𝑯𝑺𝑯 = 𝝈𝐴⨂𝝈𝐵 + 𝝈𝐴⨂𝝈𝐵′ + 𝝈𝐴′⨂𝝈𝐵 − 𝝈𝐴′⨂𝝈𝐵′

Considering the projection operators, each term transforms as: 𝝈𝐴⨂𝝈𝐵 = 𝕀 − 2𝜫𝑨 ⨂ 𝕀 − 2𝜫𝑩
replacing and simplifying :

𝑪𝑯𝑺𝑯 = 2𝕀 − 4𝜫𝑨⨂𝕀 − 4𝕀⨂𝜫𝑩 + 4𝜫𝑨⨂𝜫𝑩 + 4𝜫𝑨⨂𝜫𝑩′ + 4𝜫𝑨′⨂𝜫𝑩 − 4𝜫𝑨′⨂𝜫𝑩′
in this expression one recognizes the Eigenlogic projection and conjunction operators

To evaluate the Bell inequality parameter 𝑆 one averages this operator: 𝑆 =  𝜓|𝑪𝑯𝑺𝑯  |𝜓

By averaging the operator  𝓕 =
1

4
𝑪𝑯𝑺𝑯−

𝕀

2
one obtains the Fine inequality for probabilities:

ℱ =  𝜓|𝓕  |𝜓 = 𝑃 A ∧ B + 𝑃 A ∧ B′ + 𝑃 A′ ∧ B − 𝑃 A′ ∧ B′ − 𝑃 A − 𝑃 A =
1

4
𝑆 − 2

classically −1 ≤ ℱ ≤ 0 equivalent to −2 ≤ 𝑆 ≤ +2 for entangled states one has violation of these inequalities.

George Boole already discussed these probability inequalities in 1854 as stated by Itamar Pitowsky in [*]
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[*] Pitowsky I. From George Boole To John Bell — The Origins of Bell’s Inequality. In: Kafatos M. (eds) Bell’s Theorem, Quantum Theory
and Conceptions of the Universe. Fundamental Theories of Physics, vol 37. Springer (1989)



the Bell CHSH inequality cases

Classical, local, separable
The Bell parameter 𝑆𝐵𝑒𝑙𝑙 lies between 0 and 2.
Measurements are local: 𝐸 𝑋, 𝑌 = 𝐸 𝑋 𝐸 𝑌 .

Quantum

The case 2 ≤ 𝑆𝐵𝑒𝑙𝑙 ≤ 2 2 achieved with bipartite

quantum entangled states. 𝑆𝐵𝑒𝑙𝑙 = 2 2 is called the
Tsirelson’s bound and is a limit for Quantum systems.

Post-quantum

The case between 2 2 and 4 comprises the so-called
“no-signalling” region. The maximum value 𝑆𝐵𝑒𝑙𝑙 = 4
can be attained with logical probabilistic constructions
often named non-local PR boxes.
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V1 V2
Vref

the strange propositions of Diederik Aerts [*]

D. Aerts in 1982 proposed a macroscopic  experiment that violates the 
CHSH Bell Inequality maximally.

Two vessels V1 and V2 with a capacity of 8 liters each, linked through a 
tube with a capacity of 16 liters (at most the system holds 32 liters).
The vessel Vref used to siphon water from the V1 and V2 basins. 

4 experiments :
Experiment α: answer to: is Vref > 10 L ?
Experiment β: answer to: are V1 or V2 > 6L ?
Experiment γ: answer to: is the water drinkable ?
Experiment δ: answer to: is the water transparent ?

outcomes:  +1 if the answer is YES and  −1 if the answer is NO

Results of correlated experiments:
𝑋𝛼,𝛽 = −1 , 𝑋𝛼,𝛾 = +1 , 𝑋𝛿,𝛽 = +1 and  𝑋𝛿,𝛾 = +1.

Taking the sum for the CHSH Bell parameter:

𝑆 = 𝑋𝛼,𝛽 − 𝑋𝛼,𝛾 + 𝑋𝛿,𝛽 + 𝑋𝛿,𝛾 = 4
Bell's inequality is therefore maximally violated! 39

In 2012 we undertook the experiment at Supélec
using 2 flower pots and a 32 m water tube.

students: Vincent DUMOULIN & Yves SOURRILLE

[*] D. Aerts, Example of a macroscopical situation that
violates Bell inequalities, Lett. Nuovo Cimento 34, 107
(1982)



the logic of a PR Box
The well known nonlocal PR box [*] correlates outputs 
(𝑎, 𝑏) to inputs (𝑥, 𝑦) in a two-party correlation by means of 
a logical constraint equation:

a⊕ b ≡ x ∧ y

This box violates the CHSH Bell Inequality (BI) maximally
The measurement outcomes (𝐴, 𝐵) , Alice and Bob, give the 
values ±1.

We define the joint mean value for the possible outcomes of 
the box as a function of the marginal probabilities :

𝐶𝑥,𝑦 =  𝑎,𝑏𝑃(𝑎, 𝑏|a ⊕ b ≡ x ∧ y) ⋅ 𝐴(𝑎) ⋅ 𝐵(𝑏)

where  𝐴 𝑎 = 1 − 2𝑎 = (−1)𝑎 ;  𝐵 𝑏 = 1 − 2𝑏 = (−1)𝑏

The Bell parameter considering the four input possibilities is:

𝑆 = 𝐶00 + 𝐶01 + 𝐶10 − 𝐶11 = 4

40

a⊕ b ≡ x ∧ y

Y

B(b)A(a)

X

𝐶𝑥𝑦 = 𝑃(0,0|𝑥, 𝑦)
.
(+1)

.
(+1) + 𝑃(0,1|𝑥, 𝑦)

.
(+1)

.
(−1) +

𝑃 1,0 𝑥, 𝑦
.
−1
.
+1 + 𝑃 1,1 𝑥, 𝑦

.
−1
.
−1

𝐶00 = 𝐶01 = 𝐶10 =
1

2
+ 0 + 0 +

1

2
= +1

𝐶11 = 0 −
1

2
−
1

2
+ 0 = −1

[*] Popescu S., Rohrlich D. Quantum nonlocality as an axiom. Found Phys 24, 379–385 (1994)



analysing the PR Box Bell inequality by Eigenlogic
One uses the logical expression directly in an operator form using  the following logical identity on the equivalence 
connective ≡ leading to the Reed-Muller form:

a⊕ b ≡ x ∧ y ⟷ a⊕ b⊕ x ∧ y

Using the involution properties: −1 a⊕b⊕x∧y = − −1 a⊕b⊕x∧y = − −1 a −1 b −1 x∧y

One can then express the involution 𝑮PR operator’s eigenvalues (truth values) by: − −1 𝑎 −1 𝑏 −1 𝑥𝑦

The corresponding Eigenlogic projective operator is: 𝑭PR =
1

2
𝕀 − 𝑮PR

The Bell parameter 𝑆 is obtained by averaging the operator 𝑮PR on the possible situations given by the logical 
constraint a⊕ b ≡ x ∧ y that is to the 8 cases out of 16 where the truth value of 𝑭PR is 1

Considering all the possible cases for 𝐶𝑥,𝑦 one gets the maximum Bell parameter:

using of the idempotent property: 𝑭PR
2 = 𝑭PR

𝑆 = −
8

16
Tr 𝑭PR ∙ 𝑮PR = −

1

2
Tr 𝑭PR 𝕀 − 2𝑭PR =

1

2
Tr 𝑭PR =

8

2
= 4
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Generalizing the PR Box BI for all logical bipartite constraints [*]
All combinations produce 16 × 16 = 256 logical constraint boxes.

The PR box corresponds to : a⊕ b ≡ x ∧ y (𝑓6(a, b) ≡ 𝑓8(x, y))
BI violation 𝑆 = 𝟒 for 16 no-signaling nonlocal boxes (orange boxes)

Other 32 boxes (green boxes) are signaling and violate BI with 𝑆 = 10
3
≈ 𝟑. 𝟑𝟑

is the case for: a  b ≡ x  y (𝑓14(a, b) ≡ 𝑓8(x, y))

42

𝑓𝑛
out a, b ≡ 𝑓𝑚

in(x, y)

𝑌

𝐵(𝑏)𝐴(𝑎)

𝑋

42
[*] Z. Toffano, C. Chatard, K. Ding, A. Portalier, G. Vilde, Logical Families of Nonlocal Boxes, 6th Colloquium of the CNRS GDR 3322
on Q. Information, Foundations & Applications – IQFA (2015), Supélec student II year project in 2015
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Qubits and quantum circuits



Eigenlogic and 2-qubit quantum gates

44

Eigenlogic makes a correspondence between quantum control logic (David Deutsch’s quantum logical gate paradigm)
and ordinary propositional logic.
It is known that the 2-quibit control-phase gate 𝑪𝒁 in association with 1-quibit gates is a universal gate set.

In Eigenlogic the 𝑪𝒁 gate corresponds to the AND involution gate 𝑮∧: 𝑪𝒁 = 𝑮∧ = 𝑑𝑖𝑎𝑔 1,1,1, −1

The well-known control-not CNOT gate 𝑪 can be expressed using the Pauli matrices 𝝈𝑧 = 𝒁 and 𝝈𝑥 = 𝑿

using the Eigenlogic involution conjunction operator (in the alphabet {+1, −1}) one has directly:

𝑪 = −1 𝜫⊗𝜫− = 𝑒𝑖𝜋𝜫⊗𝜫− = 𝕀 − 2 𝜫⊗𝜫− =
1

2
𝕀 + 𝒁⊗ 𝕀 + 𝕀⊗𝑿 − 𝒁⊗𝑿 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

Z

Z

U V

𝑮⊕ = 𝑼.𝑽

Z

𝑪𝒁 = 𝑮∧ = ½(𝑰 + 𝑼+ 𝑽 − 𝑼.𝑽)

Eigenlogic 
quantum 

gates

 |𝑥  |𝑥

 |𝑥 ⊕ 𝑦 |𝑦

𝐂𝐍𝐎𝐓 = 𝑪 = ½(𝑰 + 𝑼 + 𝑽𝑥 − 𝑼.𝑽𝑥)

target bit

control bit



building the 3-qubit Toffoli universal quantum gate
The 3-qubit Toffoli (double-CNOT) gate 𝑻𝑶 is a universal reversible logic quantum gate, directly in Eigenlogic form :

𝑻𝑶 = −1 𝜫⊗𝜫⊗𝜫− = 𝕀 − 2 𝜫⊗𝜫⊗𝜫−

=
1

4
(3 𝕀 + 𝒁2 + 𝒁1 + 𝑿0 − 𝒁2 ⋅ 𝒁1 − 𝒁2 ⋅ 𝑿0 − 𝒁1 ⋅ 𝑿0 + 𝒁2 ⋅ 𝒁1 ⋅ 𝑿0)

Can be put in exponential form using the Householder transform

𝑻𝑶 = 𝑒+𝑖
𝜋

8𝑒−𝑖
𝜋

8
𝒁1𝑒−𝑖

𝜋

8
𝒁2𝑒−𝑖

𝜋

8
𝑿0𝑒𝑖
𝜋

8
𝒁2⋅𝒁1𝑒𝑖

𝜋

8
𝒁2⋅𝑿0𝑒𝑖

𝜋

8
⋅𝒁1⋅𝑿0𝑒−𝑖

𝜋

8
𝒁2⋅𝒁1⋅𝑿0

Alternative method using a T gate as the Eigenlogic seed operator: 𝑻 = 𝒁
1

4 = 𝑒𝑖
𝜋

8𝑒−𝑖
𝜋

8
𝒁 = diag 1, 𝑒𝑖

𝜋

4

using a Reed-Muller form for the CCZ gate [*] : 𝑪𝑪𝒁 = 𝑻0 ⋅ 𝑻1 ⋅ 𝑻2 ⋅ (𝑻𝑥⊕𝑦)
† ⋅ (𝑻𝑥⊕𝑧)

† ⋅ (𝑻𝑦⊕𝑧)
† ⋅ (𝑻𝑥⊕𝑦⊕𝑧)

by the Hadamard gate extension one has again the Toffoli gate : 𝑻𝑶 = 𝑯0 ⋅ 𝑪𝑪𝒁 ⋅ 𝑯0

[*] Selinger, P., Quantum circuits of T-depth one, Phys. Rev. A, 87, 252–259, (2013) 45

 |𝑥  |𝑥

 |𝑧  |𝑧 ⊕ 𝑥 ∧ 𝑦

 |𝑦  |𝑦 𝑻𝑶 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

control bit



logical universality and quantum entanglement
In binary propositional logic the following set of 8 connectives when combined with negation (NOT) constitutes 

a universal gate set : AND, OR, NOR, NAND, ⇒ , ⇏, ⇐ , ⇍
one observes that they possess an odd number of True and False truth values

the other 8 connectives are not universal: P, Q, ¬P, ¬Q, ≡ , XOR, F ,T
one observes that they possess an even number of True and False truth values

For involution logical operators 𝑮with eigenvalues {+1,−1}
the universal logical gates correspond to 8 operators with an odd number of  eigenvalues +1 and −1
therefore these are all entangling gates
the 8 other logical operators with even number of eigenvalues are separable (not entangled) and not universal.

This states clearly the correspondence between logical universality and entanglement.
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P Q F NOR P ⇍Q ¬P P ⇏Q ¬Q XOR NAND AND P ≡ Q Q P ⇒ Q P Q ⇒ P OR T

+ + + − + − + − + − + − + − + − + −

+ − + + − − − + − − + + − − + + − −

− + + + + + + − − − + + + + − − − −

− − + + + + + + + + − − − − − − − −



The Deutsch algorithm is one of the first quantum algorithms more efficient than its classical 
counterpart.

Deutsch algorithm [*]

x f00(x) f01(x) f10(x) f11(x) 
0 
1 

0 
0 

0 
1 

1 
0 

1 
1 

 

 

constant constantbalanced balanced

The algorithm measurement is made on the upper qubit of the following circuit

The answer to the question: is the logical function 𝑓 𝑥 constant or balanced? 
can be performed by a quantum computer in one step.
(the classic treatment requires two steps.) 
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𝑼𝑓:  |𝑥  |𝑦 →  |𝑥  |𝑦⨁𝑓(𝑥)

= −1 𝑓(0)  |𝑓(0)⨁𝑓(1)  |1

= −1 𝑓(0)  |0  |1 if constant
= −1 𝑓(0)  |1  |1 if balanced

𝑼𝑓

𝑯 𝑯

𝑯 𝑯 |1

 |0  | +

 | −

[*] D. Deutsch, Quantum theory, the 
Church-Turing principle and the 
universal quantum computer, Proc. 
R. Soc. A, 400, 97–117, (1985)



expressing the quantum oracle circuit in Eigenlogic

48

A Boolean logical function 𝑓 is represented by a quantum oracle 𝑼𝑓:

Particular cases are:
the 2-qubit CNOT gate 𝑪 (𝑓 is the NOT function)
the 3-qubit Toffoli gate 𝑻𝑶 (𝑓 is the AND function)

 |𝒙  |𝒙

 |𝑏  |𝑏 ⊕ 𝑓(𝒙)

𝑼𝑓

control bit

The logical function 𝑓 is represented by the projective Eignelogic operator 𝑭

The control bit corresponds to the seed projection operator in the  |𝑥 basis: 𝜫− =  | −  −| =
1

2
(𝕀 − 𝑿)

The oracle is then simply expressed in Eigenlogic as :  𝑼𝑓 = −1
𝑭⨂𝜫− = 𝑒𝑖𝜋𝑭⨂𝜫− = 𝕀 − 2𝑭⨂𝜫−

(similar approach by S. Hadfield in [*])

In the case of a one bit Boolean function 𝑓(𝑥) : 𝑼𝑓 = 𝜫0⨂𝑿
𝑓 0 +𝜫1⨂𝑿

𝑓 1

the Deutsch algorithm result is obtained by applying the oracle on :  | +  | − =
1

2
(  |0 +  |1 )

1

2
 (|0 −  |1 )

𝑼𝑓  | +  | − =
1

2
 |0 −1 𝑓(0)  | − +

1

2
 |1 −1 𝑓(1)  | −

for constant 𝑓 0 = 𝑓(1) 𝑼𝑓  | +  | − = ±  | +  | − and for  balanced    𝑓 0 ≠ 𝑓(1) 𝑼𝑓  | +  | − = ±  | −  | −

[*] S. Hadfield, On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing. 
to appear in ACM Transactions on Quantum Computing, arXiv:1804.09130



Grover's search algorithm [*]

n-qubit

1-qubit

We consider a “black box” (oracle 𝐔𝒇)

Having for the value 𝑥0 the property :
𝑓 𝑥0 = 1 and   𝑓 𝑥 = 0 for 𝑥 ≠ 𝑥0

Problem: finding the value  x0 in a 
large database with the fewest queries
possible.

[*] L. K. Grover. A fast quantum mechanical algorithm 
for database search, Proceedings, 28th Annual ACM 
Symp. on the Theory of Computing, p. 212, (1996)

Classical query: complexity: 𝑶(𝐞𝐱𝐩(𝒏))

Grover quantum query: complexity:  𝑶(𝐞𝐱𝐩( 𝒏))
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Grover algorithm and first-order-logic
The Grover search algorithm looks for an element 𝑎 (here  |𝑎2𝑎1𝑎0 =  |111 ) satisfying the property 𝑃 (oracle)
and  becomes the predicate proposition in first-order-logic using the existential logical quantifier ∃ :

∃𝑎 𝑃 𝑎

The Grover amplification gate corresponds to an Eigenlogic negated disjunction operator NOR in the X system.

The phase oracle is a double control Z gate (Eigenlogic 3-input AND: −1 𝜫⨂𝜫⨂𝜫).

¬ 𝑃𝑋 ∨ 𝑄𝑋∨ 𝑅𝑋𝑃𝑍 ∧ 𝑄𝑍 ∧ 𝑅𝑍

Z

H

H

H

H

H

H

X

X

X

X

X

XZ

H

H

H

|  0

|  0

|  0

init Grover amplification gateoracle phase gate

Eigenlogic NORX double CZ

marking |  111
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∃𝑎 𝑃 𝑎 decomposes, using Skolemization
methods into a succession of “disjunction ∨“ 
connectives.

∃𝑎 ⟺ 𝑎1 ∨ 𝑎2 ∨ ⋯∨ 𝑎𝑁

∀𝑎 ⟺ 𝑎1 ∧ 𝑎2 ∧ ⋯∧ 𝑎𝑁

A justification can be found in Herbrand’s theorem
that provides a constructive characterization of 
derivability in first-order predicate logic by means 
of propositional (sentential) logic.
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Quantum robots



quantum robots: Paul Benioff

Paul Benioff was the first to propose the idea of a quantum Turing machine in 1980 [1].

Benioff also gave the theoretical principle of a quantum robot in 1988 [2] as a first step towards a 
quantum mechanical description of systems that are aware of their environment and make decisions.

Currently  a “Quantum Robotics” group has been created and a book has been published in 2017 [3].

“Quantum Robotics is an emerging engineering and scientific research discipline that explores the 
application of quantum mechanics, quantum computing, quantum algorithms, and related fields to 
robotics. These developments are expected to impact the technical capability for robots to sense, plan, 
learn, and act in a dynamic environment.”
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[2] Benioff, P., Quantum Robots and Environments, Physical Review A, Vol. 58, No.2, pp. 893–904 (1988)

[3] Tandon, P., Lam, S., Shih, B., Mehta, T., Mitev, A., Ong, Z., Quantum Robotics - A Primer on Current Science and Future Perspectives, Morgan 
& Claypool. (2017)

[1] Benioff, P., The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by 
Turing machines, J. of Statistical Phys., Vol. 22 (1980)



Braitenberg Vehicles (BV)

Valentino Braitenberg was a cyberneticist at the University of Tübingen.

In his book Vehicles [1] he proposed various thought experiments using simple 
machines consisting in sensors, motors and wheels.

Sensors detect light produced by surrounding sources.
The sensors can be connected in different configurations of combinations to the 
wheels. Simple changes in configuration can lead to complex and surprising results 
in the agent behavior.

We designed quantum-like Braitenberg vehicles [2].

The control is based on Fuzzy Eigenlogic.

The goal is to test the multiple combinations of logical gates used in the control of 
Braitenberg vehicles by analyzing their complex behavior.
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[1] Braitenberg, V., Vehicles - Experiments in Synthetic Psychology. MIT Press; Cambridge USA. (1986)

[2] Z. Toffano, F. Dubois, Quantum eigenlogic observables applied to the study of fuzzy behaviour of Braitenberg vehicle quantum robots, 
Kybernetes, (2019)



vehicle input-output structure [*]

The computational block is composed of logic operators (matrices) designed with the quantum-
like Eigenlogic method. The control of the two-wheel motors (ML, MR), responds to signals from 
the two light sensors (SL, SR).
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the input state vector representing the light intensity on SL and SR is:  |𝜓 =  |𝜙𝑆𝐿 ⨂  |𝜙𝑆𝑅

The fuzzy quantities for left and right wheel (WL, WR) control, are the mean values of the logical operators 
𝑭𝑳 and 𝑭𝑹 on the input compound state  |𝜓 :

𝜇𝐿 =  𝜓|𝑭𝑳  |𝜓 ,       𝜇𝑅 =  𝜓|𝑭𝑹  |𝜓

[*] Cunha R.A.F., Sharma N., Toffano Z., Dubois F. Fuzzy Logic Behavior of Quantum-Controlled Braitenberg Vehicle Agents. In: Coecke 
B., Lambert-Mogiliansky A. (eds) Quantum Interaction. QI 2018. Lecture Notes in Computer Science, vol 11690. Springer, Cham. (2019) 



emotion as emergent, evolvable behavior

Emotion is an emergent behavior that arises from sensors, drives, effectors and logic.

This may look like human or animal behavior but also as an entirely new “other world” 
behavior.
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Evolved “emotional” 
behavior of QBV robot

Sensors, vision and fusion = 
features and patterns

Drives and effectors

Main input-output mapping 
(perception, internal state, behavior)

Precise motion generation (behavior)D
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BV classical emotions

Fear (BV-2a) (𝑭𝐿 = 𝑨 and 𝑭𝑅 = 𝑩):
turns away from the light if one sensor is activated 
more than the other. If both are equal, the light source 
is “attacked”.

Aggression (BV-2b) (𝑭𝐿 = 𝑩 and 𝑭𝑅 = 𝑨):
when the light source is placed near either sensor, the 
vehicle will face it and go towards it.

Love (BV-3a) (𝑭𝐿 = 𝕀 − 𝑨 and 𝑭𝑅 = 𝕀 − 𝑩):
will go until it finds a light source, then slows to a stop. 
If one side sees light, the vehicle turns in the direction 
of the light.

Exploration (BV-3b) (𝑭𝐿 = 𝕀 − 𝑩 and 𝑭𝑅 = 𝕀 − 𝑨): 
will go to the nearby light source, keeps an eye open 
and will sail to other stronger sources, given the 
chance.
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BV-2a BV-2b

BV-3a

BV-3b

©  Braitenberg
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Fear
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Aggression



BV quantum-like emotions: worship, doubt

Worship: (𝑭𝐿 =
1

2
1 − 𝑯⨂𝑯 and 𝑭𝑅 = 𝑩):

one of the control logical operator is the projector version of 
the double-Hadamard qubit gate 𝑯.

The vehicle keeps rotating around its own center in the 
absence of light. In the presence of light, it goes towards the 
source and starts to rotate around the source (or multiple 
sources when they are close together).

Doubt: (𝑭𝐿 = 𝑩 ⇏ 𝑨 and 𝑭𝑅 = 𝑭𝑋𝑂𝑅 =
1

2
1 − 𝒁⨂𝒁 ):

here, one of the control logical operator is XOR (projector 
version of the double- 𝒁 qubit gate).

This operator provides a property that makes the vehicle 
turn around in circles, regardless of the presence or absence 
of stimuli. 
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Worship
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Doubt



quantum wheel of emotions
The concept of “wheel of emotions” introduced by R. Plutchik [*]
allows a continuous set of emotional states.

A small perturbation in the angle of the input state will correspond 
to small changes in the vehicle’s behavior.

The emotions presented on the wheel shown are an example 
corresponding to the following 𝐿 | 𝑅 logical control operators:

• (Anger-Aggressive) 𝐵 | 𝐴
• (Passion) 𝐵 ⇏ 𝐴 |𝐴 ⇏ 𝐵
• (Love)  𝐴 |  𝐵
• (Interest-Explore)  𝐵 |  𝐴
• (Curiosity) 𝐴 ⇏ 𝐵 | 𝐵 ⇏ 𝐴
• (Distraction) 𝐴 ⇏ 𝐵 | 𝑋𝑂𝑅
• (Apprehension) 𝐵 ⇏ 𝐴 | 𝑋𝑂𝑅
• (Worship) 𝑯⨂𝑯 | 𝐵
• (Sadness) 𝐶𝑁𝑂𝑇 | 𝐶𝑁𝑂𝑇
• (Fear) 𝐴 | 𝐵
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[*] Plutchik, R., 2001, The Nature of 
Emotions, Amercian Scientist, July-August, 

Vol. 89, N° 4, pp. 334-350 
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interesting reads
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