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Physics & Logic
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Representing Physics
Physical quantities are represented in various mathematical forms:

• Scalars (mass, energy, wavelength…)
• Vectors (momentum, electromagnetic field,…)
• Matrices (spin, Hamiltonians, optical transformations…)
• Tensors (gravitation, stress…)

So restricting the language in physics to Boolean functions of the two numbers 𝟎 and 1 is very hindering.

A basic aspect of quantum physics is quantification represented by the spectrum

corresponding to the eigenvalues of operators (matrices) called observables.

A quantum measurement gives one of the eigenvalues with a certain probability.

• Angular Momentum: discrete (positive and negative) and finite; e.g. {−
1

2
, +
1

2
} (Fermions) or −1, 0 , +1

• Harmonic Oscillator: discrete positive and infinite. {0,1,2,⋯ } (Bosons)

• Position and Momentum: continuous
…
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Why adapting logic ?
Greek word logos, means both speech and reason,

Logic defines languages whose syntax constructs formal languages and whose semantics interprets them.

Syntax should have a link with the structure of Physics (symmetry, geometry, particles, waves…)

Semantics should correspond to the valuation (measurement) in Physics (discrete, rational, complex, random…)

Looking for more “physical” representations of logic. How ?

Different possibilities:

• Representing Boolean logic {0,1} by operators (quantum logic, quantum computing, …)

• Using alternative binary logical values, negative numbers e.g. {−1,+1}, (angular momentum, Ising model…)

• Using many-valued logic (Qudits, Fourier Transform,…)

• Using fuzzy logic (quantum probabilistic interpretation…)

• Representing the logic by operators instead of functions to handle with noncommutativity and reversibility
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George Boole
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George Boole :  the truth values  “ 0 ” and “ 1 ” 
George Boole in 1847 [a] gave a mathematical symbolism for logical propositions.

The conjunction (AND) of 2 logical propositions X and Y is the product:

𝑥𝑦 = 𝑦𝑥

Thus 𝑥 (“elective” symbol) acts as a selection operator on 𝑦 (also 𝑦 on 𝑥)

applied on itself the proposition does not change: 𝑥2 = 𝑥

also written as 𝑥 1 − 𝑥 = 0 : the principle of non contradiction

showing that 𝑥 is idempotent and orthogonal to (1 − 𝑥)

the solutions of this equation are the numbres 0 and 1 representing  “False" and “True“ respectively.

This equation  was considered by George Boole the “fundamental law of thought”! [b]

The method was extended by Boole in the continuous interval [0,1] to give one of the first mathematical 
formalizations of probabilities in [b].

7
[b] Boole, G.: An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Macmillan, (1854)

[a] Boole, G.: The Mathematical Analysis of Logic. Being an Essay To a Calculus of Deductive Reasoning, (1847)
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Boole’s method for generating logical functions and truth tables [*]
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Boole’s idempotent logical functions 𝑓 ∈ {0,1} are expressed in an arithmetical form    (not modulo 2!)

a logical function of two variables can be expressed by a bilinear form of symbols 𝑥 and 𝑦 and truth values 𝑓(𝑎, 𝑏)

𝑓 = 𝑓 0,0 1 − 𝑥 1 − 𝑦 + 𝑓 0,1 1 − 𝑥 𝑦 + 𝑓 1,0 𝑥 1 − 𝑦 + 𝑓 1,1 𝑥𝑦

Negation is the complementation by subtracting 𝑓 from the number 1:  𝑓 = 1 − 𝑓

generalizes to any number of arguments

[*] Toffano, Z. Eigenlogic in the Spirit of George Boole. Logica
Universalis, Birkhäuser-Springer, 14, 175–207 (2020). 



Logical forms and diagrams
Elementary propositions:   A , B

SOP (Sum Of Products) canonical form
disjunction (∨, OR) of conjunctions (∧, AND) 
Conjunction: A ∧ B

Disjunction: A ∨ B = ( A ∧ B) ∨ (A ∧  B) ∨ (A ∧ B)
in arithmetical form:
1 − 𝑎 𝑏 + 𝑎 1 − 𝑏 + 𝑎𝑏 = 𝑎 + 𝑏 − 𝑎𝑏

Exclusive disjunction: A⨁B =  A ∧ B ∨ A ∧  B
in arithmetical form:
1 − 𝑎 𝑏 + 𝑎 1 − 𝑏 = 𝑎 + 𝑏 − 2𝑎𝑏

Reed-Muller canonical form
exclusive disjunction (⨁, XOR) of conjunctions (∧, AND)

A ∨ B = A⨁B ∨ A ∧ B = A⨁B⨁ A ∧ B

De Morgan duality:  A ∧  B = A ∨ B
in arithmetical form:
1 − 𝑎 1 − 𝑏 = 1 − 𝑎 + 𝑏 − 𝑎𝑏 = 1 − 𝑎 − 𝑏 + 𝑎𝑏

A

B
A ∧ B

 A ∧ B

A ∧  B

 A ∧  B

A ∨ B

A⨁B

BA

A ∧ B
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Truth tables and Venn diagrams

A simple way to illustrate all logical truth-tables is by 
using Venn diagrams (Venn 1881)

Direct correspondence with set theory and 
probability theory

Widely used in information theory for the 
representation of different information 
representations (relative, conditional…)

FFFF TFFF FTFF TTFF

FFTF TFTF FTTF TTTF

FFFT TFFT FTFT TTFT

FFTT TFTT FTTT TTTT

FF TF FT TT

False  ¬A A True T

False 

XOR    A⊕B

¬A

¬B

NOR    ¬(A∨B)

NAND    ¬(A∧B)

OR     A∨B

EQ     A≡BAND     A∧B

True T

B

A

A⇒ B

B⇒ A

B⇏ A

A⇏ B
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Operators in Logic
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Why one should use operators (rather than functions) in logic ?

An important difference between operators and functions:

an operator can be described by its action only without defining the input domain

Operators permit to represent different effects peculiar to quantum physics:

• non-commutativity
• reversibility 

Quantum computing uses reversible operators (commuting and not) as logical quantum gates

Linear algebra using operators is the most used mathematical language to perform computer algorithms in the 
domains of:

• Big Data
• ArtificiaI Intelligence (AI)
• Quantum Compuiting
• …
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Operators in Logic
In 1847 G. Boole uses symbols (elective) that act as idempotent operators
less known: in 1848 in [a], he gave a logical interpretation of unitary quaternions.

C. S. Pierce often used matrices to build his logic formalism at the end of the XIXth century.

In 1921 L. Wittgenstein states in [b] that all propositions can be derived by repeated 
application of the operator 𝑵 to the elementary propositions.

In 1924, M. Schönfinkel [c] introduced an operator based method in logic
H. Curry named it successively  Combinatory Logic and improved the method [d] which lead 
to lambda calculus.

Boolean logical functions as used nowadays in digital circuits were essentially introduced by 
C.E. Shannon in his Master’s thesis in 1938 [e] to represent binary switching functions.

13
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[a] Boole, G. Notes on quaternions. Philos. Mag, 33, 278–280, (1848)

[c] Schönfinkel, M. Über die Bausteine der mathematischen Logik. Math. Ann, 92, 305–316. (1924)

[b] Wittgenstein, L. Tractatus Logico-Philosophicus, 6.001, Routledge (1921)

[d] Curry, H.B.; Feys, R. Combinatory Logic; North-Holland Co: Amsterdam, The Netherlands, (1958)

[e] Shannon, C.E. A symbolic analysis of relay and switching circuits. Trans. AIEE, 57(12), 713–723 (1938)



Projections as propositions and quantum logic

M. H. Stone gave the conditions for operations on projectors and commutativity [a] and 
established that each binary logical proposition corresponds by duality to the set of all its 
true valuations (Stone Duality).

J. von Neumann considered measurement projection operators as propositions in 1932 [b]
and also stated that a quantum state  |𝜓 can be represented by a density matrix (rank-1  
projection operator) :

𝝆 =  |𝜓  𝜓|

Quantum logic proposed by Garret Birkhoff and John von Neumann [c] suggested the 
replacement of Boolean algebras with the lattice of closed subspaces of a (finite) Hilbert 
space.

Quantum Logic had many promoters but also detractors.
It is still not considered an “operational tool” for quantum computing

14

[a] Marshall Harvey Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis, p.70: “Projections”, (1932) 

[b] John von Neumann. Mathematical Foundations of Quantum Mechanics, Eng. Transl. (1955), p.249: “Projectors as Propositions”, (1932)

[c] Garret Birkhoff, John von Neumann, The Logic of Quantum Mechanics. The Annals of Mathematics, 2nd Ser., 37 (4), 823-843 (1936)
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Eigenlogic
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Eigenlogic

Eigenlogic: a logical method using operators in linear algebra [a,b,c]

logical operators    ⟺ logical connectives (syntax)

eigenvalues of logical operators    ⟺ truth values (semantics)

eigenvectors of logical operators     ⟺ interpretations (propositional cases)

Eigenlogic uses the Kronecker product to scale-up to more logical arguments (arity).

A single seed operator generates the entire logic.

16

[b] Toffano, Z., Eigenlogic in the Spirit of George Boole. Logica Universalis, Birkhäuser-Springer, 14, 175–207 (2020) 
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[a] Dubois, F., Toffano, Z., Eigenlogic: A Quantum View for Multiple-Valued and Fuzzy Systems, QI 2016. In LNCS; Springer: Berlin; Vol 10106, (2017).

[c] Toffano Z, Dubois F., Adapting Logic to Physics: The Quantum-Like Eigenlogic Program. Entropy. ; 22(2):139. (2020)



Eigenlogic: one-qubit Boolean logical operators 

The qubits   |1 and  |0 define the computational basis (the “𝑧” base):    |0 =
1
0

,   |1 =
0
1

eigenvectors of the Pauli matrix 𝝈𝑧 = diag +1,−1

Choice of the logical seed projector 𝜫 =  |1  1| (density matrix of qubit  |1 )

𝜫  |1 =  |1  1|  |1 =  |1 = 1  |1 ,   eigenvalue: 1  ;     𝜫  |0 =  |1  1|  |0 = 0 = 0  |0 ,    eigenvalue: 0.

Logical operators as a linear development (equivalent to Boole’s method):

𝑭 = 𝑓 0 (𝕀 − 𝜫) + 𝑓 1 𝜫 =
𝑓(0) 0
0 𝑓(1)

= diag(𝑓 0 , 𝑓 1 )

the cofactors 𝑓 0 and 𝑓 1 are the eigenvalues i.e. the truth values of the logical connective.

Negation is obtained by complementation (substracting from the identity operator) :   𝑭 = 𝕀 − 𝑭

other choices of logical bases are possible: e.g. the “𝑥” base with 𝜫+ =  | +  +| ,   | + =
1

2
 |0 +  |1
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Eigenlogic: two-qubit Boolean logical operators

Making use of the Kronecker product ⨂ to scale up to more arguments (as done in quantum computing)

Scaling to 2-qubit logical operators with the 4 basis projectors:

𝜫11 =  |11  11| = 𝜫⨂𝜫 ;  𝜫10 = 𝜫⨂(𝕀 − 𝜫) ; 𝜫01 = (𝕀 − 𝜫)⨂𝜫 ; 𝜫00 = (𝕀 − 𝜫)⨂(𝕀 − 𝜫)

All 16 logical operators can directly be obtained by the bilinear development (G. Boole’s method)

𝑭 = 𝑓 0,0 𝜫00 + 𝑓 0,1 𝜫01 + 𝑓 1,0 𝜫10 + 𝑓 1,1 𝜫11 = 𝑑𝑖𝑎𝑔(𝑓 0,0 , 𝑓 0,1 , 𝑓 1,0 , 𝑓 1,1 )

the truth values are 𝑓 𝑥, 𝑦 ∈ {0,1}
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Eigenlogic elementary (or atomic) propositions and connectives

In propositional logic one defines the elementary (or atomic) propositions P and Q in a well-formed-formula.

In Eigenlogic atomic propositions are operators that are extensions of the seed projector 𝜫:

𝑷 = 𝜫⨂𝕀 = diag(0,0,1,1) ,         𝑸 = 𝕀⨂𝜫 = diag 0,1,0,1

directly from 𝑷 and 𝑸 all other logical operators are derrived:

Conjunction (AND, ∧ ) 𝑭AND = 𝑭P∧Q = 𝑷 ∙ 𝑸 = 𝜫⨂𝜫 = diag 0,0,0,1 is the product of 𝑷 and 𝑸
Disjunction (OR, ∨ ) 𝑭OR = 𝑭P∨Q = 𝑷 + 𝑸 − 𝑷 ∙ 𝑸 = diag 0,1,1,1 is not the sum of 𝑷 and 𝑸
Exclusive disjunction (XOR, ⨁) 𝑭XOR = 𝑷 + 𝑸 − 2𝑷 ∙ 𝑸 = diag 0,1,1,0 is not the sum of 𝑷 and 𝑸
Material implication (⟹ ) 𝑭⟹ = 𝑷 + 𝑸 − 𝑷 ∙ 𝑸 = diag 1,1,0,1

Negation is simply obtained by subtracting from the identity operator 𝕀 :

𝑭𝑵𝑨𝑵𝑫 = 𝕀 − 𝑭𝑨𝑵𝑫 = diag 1,1,1,0 ;    𝑭⟺ = 𝕀 − 𝑭XOR = diag 1,0,0,1
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Changing the paradigm: using truth values {+1,-1}
+1 (spin up)   ↔ 0 :  “False”   ;                   −1 (spin down)  ↔ 1 :  “True”

The linear Householder Transform: 𝑮 = 𝕀 − 2𝑭 = − 1 𝑭 = 𝑒𝑖𝜋𝑭 = 𝑒𝑖
𝜋

2𝑒−𝑖
𝜋

2
𝑮

Is an isomorphism from projection operators 𝑭 (eigenvalues 0,1 ) to involution operators 𝑮 (eigenvalues +1,−1 ) :

𝑮 and 𝑭 have the same eigenvectors

Choice of the logical “seed” operator: Pauli matrix, 𝝈𝑧 = 𝒁 the « Z » quantum gate (other directions possible: 𝝈𝑥…)

𝝈𝑧 = 𝒁 = diag(+1,−1) = 𝕀 − 𝜫 − 𝜫 = 𝕀 − 2𝜫 = (−1)
𝜫

The equivalent of the elementary propositions  𝑷 and 𝑸 in 0,1 are the involution  𝑼 and 𝑽 in +1,−1

𝑼 = 𝝈𝑧⨂𝕀 = diag(+1,+1,−1,−1) ,     𝑽 = 𝕀⨂𝝈𝑧 = 𝑑𝑖𝑎𝑔(+1, −1, +1,−1)

Negation is simply obtained by multiplying by  −1:        𝑮 = −𝑮

Exclusive disjunction 𝑮⊕ = 𝑼 ∙ 𝑽 = diag 1,−1,−1,1 is the product of 𝑼 and 𝑽

This shows that even though the logic for {0,1} and {+1,-1} is the same, the mathematical operations are not !
This binary reversible logic alphabet is often used in Ising models and neural networks.
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Logical Operator 
Truth Tables

21

logical connective 

for P, Q

truth table {F, T}:  

{0, 1} or { + 1,  − 1}

{0, 1}  projective 

logical  operator

{ + 1,  − 1}  involitive

logical  operator

False F F F F F 0  + I

NOR F F F T I − P − Q + PQ (1/2) (+I – U – V − UV)

P ⇍ Q F F T F Q − PQ (1/2) (+I − U + V+UV)

¬P F F T T I − P  − U

P ⇏ Q F T F F P − PQ (1/2) ( + I + U − V + UV)

¬Q F T F T I − Q  − V

XOR ; P⊕Q F T T F P + Q − 2 PQ UV = Z⊗Z

NAND ; P↑Q F T T T I − PQ (1/2) ( − I − U − V + UV)

AND ; P∧Q T F F F PQ = Π⊗Π (1/2) ( + I + U + V − UV)

P ≡ Q T F F T I − P − Q + 2 PQ  − UV

Q T F T F Q = I⊗Π V = I⊗Z

P ⇒ Q T F T T I − P + PQ (1/2) (  − I − U + V − UV)

P T T F F P = Π⊗I U = Z⊗I

P ⇐ Q T T F T I − Q + PQ (1/2) (  − I + U − V − UV)

OR ; P∨Q T T T F P + Q − PQ (1/2) (  − I + U + V + UV)

True T T T T T I  − I
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Eigenlogic is different from quantum logic

In Eigenlogic the extension of the seed operator 𝜫 with the identity operator 𝕀

ensures the independence of the elementary propositions represented in Eigenlogic by the operators 𝑷 and 𝑸

𝑷 = 𝜫⨂𝕀 ;         𝑸 = 𝕀⨂𝜫

This is a major difference with quantum logic !

In quantum logic atomic propositions are pure state density matrices (rank-1 projection operators).

For example considering the density matrix of the quantum state  |11 :

𝝆11 =  |11  11| = 𝜫⨂𝜫

corresponding to the conjunction
𝝆11 = 𝑭AND = 𝜫⨂𝜫 = 𝑷 ∙ 𝑸

which is not logically in propositional logic.
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Many-Valued 
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More than binary: many-valued logic

24

[b] Emil Post, Introduction to a General theory of Elementary Propositions, American Journal of Mathematics 43: 163–185 (1921)

[a] Jan Łukasiewicz, Selected Works, North-Holland, (1970), pp. 87–88, On three-valued logic, (1921) 
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Many-valued logics was first proposed by J. Łukasiewicz [a] and  E. Post [b] in 1921

born nearly simultaneously to the theory of quantum mechanics.

With many-valued logic higher information densities can be achieved:
the information density in a 𝑚-valued system is log2𝑚 times larger than in a binary system

This logic has interested engineers involved in various aspects of information technology  for 
over 40 years.

Used in the computer language HDL (Hardware Description Languages) ​​for simulation of 
digital circuits and their synthesis.

Standards have been established, for example IEEE 1364MVL :



Many-valued Eigenlogic

The total number of logical connectives for a system of 𝑚 values and 𝑛 arguments is 𝑚𝑚
𝑛

.

For one-argument system with 3 values 33
1
= 27 and for two arguments 33

2
= 19683.

The seed operator 𝜦 can be any operator with𝑚 non-degenerate eigenvalues 𝜆𝑖 ,

using Lagrange-Cayley-Hamilton matrix interpolation the projector of each eigenstate is given uniquely by:

𝜆𝑖 >< 𝜆𝑖 = 𝜫𝜆𝑖 𝜦 =  

𝑗=1,𝑗≠𝑖

𝑚
𝜦 − 𝜆𝑗𝕀

𝜆𝑖 − 𝜆𝑗

A logical operator for arity-1 is then given by the spectral decomposition :

𝑭
𝐿
=  𝑖=1
𝑚 𝑓 𝜆𝑗 𝜫𝜆𝑖 𝜦
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Identification with Angular Momentum

Balanced ternary logic equivalent to Orbital Angular Momentum 
(OAM) with  ℓ = 1.
The 𝑧 component of the orbital angular momentum  :

𝑳𝑧 = ℏ𝜦 = ℏ
1 0 0
0 0 0
0 0 −1

= 𝑑𝑖𝑎𝑔(+1,0, −1)

the three rank-1 projectors: 
𝜫+1 =

1

2
𝜦(𝜦 + 𝕀) ,    𝜫0 = 𝕀 − 𝜦

𝟐 ,   𝜫−1 =
1

2
𝜦(𝜦 − 𝕀)

𝑼 and 𝑽, are then as usual in Eigenlogic:
𝑼 = 𝜦⊗ 𝕀,  𝑽 = 𝕀⊗ 𝜦

26

Min U \\ V F N T 

False  ≡  +1 +1 +1 +1 

Neutral  ≡  0 +1 0 0 

True  ≡   − 1 +1 0  − 1 

Max U \\ V F N T 

False  ≡  +1 +1 0  − 1 

Neutral  ≡  0 0 0  − 1 

True  ≡   − 1  −  1  − 1  − 1 

Spin Family (Bosons ℓ and Fermions 𝒔) 
(© Julian Voss-Andreae. Photo: Dan Kvitka.)

ℓ = 𝟏
𝒔 = 𝟏/𝟐

ℓ = 𝟐
𝒔 = 𝟑/𝟐

𝒔 = 𝟓/𝟐

In many-valued logic the Min and Max are the equivalent of AND and OR

𝑴𝒊𝒏(𝑼, 𝑽) =
𝟏

𝟐
(𝑼 + 𝑽 + 𝑼

2

+ 𝑽
2

− 𝑼 ⋅ 𝑽 − 𝑼
2

⋅ 𝑽
2

) = 𝑑𝑖𝑎𝑔(1,1,1,1,0,0, 1,0, −1)

𝑴𝒂𝒙 𝑼, 𝑽 =
𝟏

𝟐
𝑼 + 𝑽 − 𝑼

2

− 𝑽
2

+ 𝑼 ⋅ 𝑽 + 𝑼
2

⋅ 𝑽
2

= 𝑑𝑖𝑎𝑔 1,0,−1,0,0, −1,−1, −1, −1

Logical observables can be identified with 
Quantum Angular Momentum.
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Syntax and Semantics in Unitary Operators
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Syntax-Semantics duality and anticommutativity

Considering the 2 eigenstates  | ± 𝑧 of 𝝈𝑧 with  eignevalues±1

and using he anti-commutativity of the Pauli operators: 𝝈𝑥 ∙ 𝝈𝑧 = −𝝈𝑧 ∙ 𝝈𝑥

𝝈𝑥 ⋅ 𝝈𝑧  | ± 𝑧 = ±1 𝝈𝑥  | ± 𝑧 = −𝝈𝑧 ⋅ 𝝈𝑥  | ± 𝑧 gives         𝝈𝑧 𝝈𝑥  | ± 𝑧 = ∓1 𝝈𝑥  | ± 𝑧

So 𝝈𝑥| ± 𝑧 > is an eigenstate of 𝝈𝑧 with eigenvalue ∓1 it represents the state  | ∓ 𝑧 the complement of  | ± 𝑧

Identifying  | + 𝑧 with qubit  |0 and  | − 𝑧 with qubit  |1 gives : 𝝈𝑥  |0 =  |1 and         𝝈𝑥  |1 =  |0

This operation corresponds to logical binary negation.

So for these operators the basic logical operation of binary negation is a consequence of anti-commutativity

In this very simple example using the Pauli matrices as Eigenlogic operators, one has simultaneously:

• a semantic representation by the eigenvalues of the diagonal Pauli matrix 𝝈𝑧

• a syntactic representation by a permutation operation represented by the Pauli matrix 𝝈𝑥.
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Syntax and Semantics for many-valued operators
The quantum state logical complementation can be generalized for a 𝑑-dimensional multi-level system (qudit)

using the generalization of the Pauli operators given by the Weyl operators:  𝑿𝑑 and 𝒁𝑑:

𝑿𝑑  |𝑗 =  |𝑗 + 1 ;      𝒁𝑑|𝑗 > = 𝜔𝑑
𝑗
|𝑗 > with   𝜔𝑑 = 𝑒

𝑖
2𝜋

𝑑

𝑿𝑑 and 𝒁𝑑 possess the same eignevalues and verify : 𝒁𝑑 ⋅ 𝑿𝑑 = 𝜔𝑑 𝑿𝑑 ⋅ 𝒁𝑑

the action of the shift operator 𝑿𝑑 on the state |𝑗 >, which is an eigenstate of 𝒁𝑑, gives the state |𝑗 + 1 >, so by 
applying successively this operator one can generate all the other states of the basis.

The semantics is here represented by the eigenvalues of 𝒁𝑑 the 𝑑th roots of unity 𝜔𝑑

The syntax is represented by 𝑿𝑑 corresponding to a many-valued negation as formulated by E. Post.

The transformation from 𝒁𝑑 to 𝑿𝑑 is the Discrete Fourier Transform (DFT) operator (Quantum Fourier Transform)

The Fourier Transform becomes the mediator between logical syntax and logical semantics for many-valued systems.
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Fuzzy
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Fuzzy Eigenlogic: when the logical input is not an eigenstate
In 1965 L. Zadeh [a] proposed fuzzy logic to describe partial truths.
Truth values ​​can take values ​​between 0 and 1.

Fuzzy logic is grounded on the theory of fuzzy sets. The relation between the theory of fuzzy sets and the 
probability theory has been debated for a long time.

The quantum principle of superposition of states finds a counterpart in the degree of membership to fuzzy sets:
the mean value of an Eigenlogic projection operator 𝑭 gives a  fuzzy measure when the quantum state  |𝜓 is not 
an eigenstate of 𝑭 (a  crisp measure 0 or 1 for eigenstates)

The Eigenlogic fuzzy membership function is:          𝜇 =  𝜓|𝑭  |𝜓 with  0 ≤ 𝜇 ≤ 1

Fuzziness can be related to the probabilistic nature of quantum measurements (Born rule).
For a projective observable 𝑷measured on a quantum state  |𝜓 we have the probability (Gleason’s theorem [b]):

𝑝  |𝜓 =  𝜓|𝑷  |𝜓 = 𝑇𝑟(𝝆 ∙ 𝑷)          with        𝝆 = |𝜓  𝜓| the “density matrix”. 

A projective observable corresponds to a logical projection operator in Eigenlogic.

31

[a] Zadeh, L.A.: Fuzzy sets. Information and Control, 8 (3), 338-353, (1965)

[b] A. M. Gleason, Measures on the closed subspaces of a Hilbert space. Indiana U. Mathematics Journal, 6, 885–893, (1957) 
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Eigenlogic fuzzy conjunction, disjunction and material implication
A generic qubit state on the Bloch sphere:  |𝜙 = sin𝜃

2
 |0 + 𝑒𝑖𝜑cos𝜃

2
 |1 , 

the quantum average (Born rule) of the logical projector is:  𝜇(𝐴) =  𝜙|𝜫  |𝜙 = cos2𝜃
2

and the complement: 𝜇(  𝐴) =  𝜙|(𝕀 − 𝜫  )|𝜙 = sin2𝜃
2
= 1 − cos2𝜃

2

which satisfies the condition of fuzzy logic for the complement (negation) of a fuzzy set.

The corresponding fuzzy membership function for 𝑷 and 𝑸 by performing the quantum 

average on :   |𝜓 =  |𝜙𝑝 ⨂  |𝜙𝑞 with    𝑝 = cos
𝜃𝑝

2

2
and     𝑞 = cos

𝜃𝑞

2

2

𝜇 𝑃 =  𝜓|𝑷  |𝜓 = 𝑝(1 − 𝑞) + 𝑝 ⋅ 𝑞 = 𝑝 ;      𝜇(𝑄) =  𝜓|𝑸  |𝜓 = 𝑞

The fuzzy measure of logical operators are :

Conjunction 𝜇(𝑃 ∧ 𝑄) =  𝜓|𝑷 ⋅ 𝑸  |𝜓 =  𝜓|𝜫⨂𝜫  |𝜓 = 𝑝 ⋅ 𝑞 = 𝜇(𝑃) ⋅ 𝜇(𝑄)
Disjunction 𝜇 𝑃 ∨ 𝑄 = 𝑝 + 𝑞 − 𝑝 ⋅ 𝑞 = 𝜇 𝑃 + 𝜇 𝑄 − 𝜇 𝑃 ⋅ 𝜇 𝑄
Material Implication 𝜇 𝑃 ⇒ 𝑄 = 1 + 𝑝 + 𝑝 ⋅ 𝑞 = 1 − 𝜇 𝑄 + 𝜇(𝑃) ⋅ 𝜇(𝑄)

We see that fuzzy disjunction 𝜇 𝑃 ∨ 𝑄 corresponds to the usual inclusion-exclusion
expression for combined probabilities due to H. Poincaré [*]
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 | − 𝑖

 |0

 |1

 | + 𝑖

 | +

 | −

 |𝜙

𝜑

𝜃

Bloch sphere in Hilbert space
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[*] Poincaré, H. Calcul des Probabilités; Gauthier-Villars: Paris, France, 1912



Logic and Bell Inequalities
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Correlations of 2 quantum particles: CHSH Bell-inequality [*]

Local properties (ex. 𝐴 = +1, 𝐴’ = −1, 𝐵 = +1, 𝐵’ = +1)

in all 16 cases (deterministic) 𝐴(𝐵 + 𝐵’) + 𝐴’(𝐵 − 𝐵’) = ±2

CHSH-Bell inequality requires 16 measurements: 𝑆 = | < 𝐴𝐵 + 𝐴𝐵’ + 𝐴’𝐵 − 𝐴’𝐵’ > | ≤ 2

But Quantum Mechanics allows:   𝟐 < 𝑺 ≤ 𝟐√𝟐 = 𝟐. 𝟖𝟑

so violates the CHSH Inequality > 2 !

A CHSH “Bell experiment”

Source
Alice’s set {𝐴, 𝐴’} Bob’s set {𝐵, 𝐵’}

𝐴 = +1

𝐴’ = −1

𝐵 = +1

𝐵’ = +1

[*] J.F. Clauser; M.A. Horne; A. Shimony; R.A. Holt, 
Proposed experiment to test local hidden-variable 
theories, Phys. Rev. Lett., 23 (15): 880–4, (1969)
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𝐶(𝛼, 𝛽): coincidence photon counting rate function of the polarisation angles 𝛼 and 𝛽

Then the 2-photon correlation is defined: 𝐸 𝛼, 𝛽 =
𝐶 𝛼,𝛽 +𝐶 𝛼⊥,𝛽⊥ −𝐶 𝛼⊥,𝛽 −𝐶 𝛼,𝛽⊥

𝐶 𝛼,𝛽 +𝐶 𝛼⊥,𝛽⊥ +𝐶 𝛼⊥,𝛽 +𝐶 𝛼,𝛽⊥

The Bell CHSH inequality is a function of the correlations 𝐸 for 4 experimental settings {𝛼𝑖 , 𝛽𝑗} with 𝑖, 𝑗 ∈ 1,2 :

the Bell parameter: 𝑆 = 𝐸 𝛼1, 𝛽1 + 𝐸 𝛼1, 𝛽2 + 𝐸 𝛼2, 𝛽1 − 𝐸 𝛼2, 𝛽2
Classically the Bell inequality verifies:  −2 ≤ 𝑆 ≥ +2

for the angles : 𝛽1 − 𝛼1 =
𝜋

8
, 𝛼2 − 𝛽1 =

𝜋

8
, 𝛽2 − 𝛼2 =

𝜋

8

we have a violation of the Bell CHSH inequality 𝑆 ≥ 2

with the maximal value 𝑆 𝑚𝑎𝑥 = 2 2
obtained with an entangled state (Bell state)

[*] A. Aspect; P. Grangier; G. Roger, Experimental 
Realization of Einstein-Podolsky-Rosen-Bohm 
Gedankenexperiment: A New Violation of Bell's 
Inequalities. Phys. Rev. Lett. 49 (2): 91–4, (1982)

photon 1

2 photon source Ca40

singlet state

photon 2PBS1 (𝛼) PBS2  (𝛽)

 |𝐴∥ 𝛼

 |𝐴⊥ 𝛼

 |𝐵∥ 𝛽

 |𝐵⊥ 𝛽

 |𝐻 𝐴

 |𝑉 𝐴𝛼

𝛼⊥ = 𝛼 +
𝜋

2

𝛽

𝛽⊥ = 𝛽 +
𝜋

2

 |𝑉 𝐵

 |𝐻 𝐵

 |Ψ− 𝑠 =
1

2
 |𝐻 1  |𝑉 2 −  |𝑉 1  |𝐻 2
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The Bell CHSH inequality cases

Classical, local, separable
The Bell parameter 𝑆𝐵𝑒𝑙𝑙 lies between 0 and 2.
Measurements are local: 𝐸 𝑋, 𝑌 = 𝐸 𝑋 𝐸 𝑌 .

Quantum

The case 2 ≤ 𝑆𝐵𝑒𝑙𝑙 ≤ 2 2 achieved with bipartite

quantum entangled states. 𝑆𝐵𝑒𝑙𝑙 = 2 2 is called the
Tsirelson’s bound and is a limit for Quantum systems.

No-signaling (post-quantum theories)

The case between 2 2 and 4 is called the “no-
signalling” region. The maximum value 𝑆𝐵𝑒𝑙𝑙 = 4 can
be attained with logical probabilistic constructions
often named non-local PR boxes.
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The CHSH Bell inequality and probabilities
The CHSH Bell inequality is expressed with the Pauli spin operators 𝝈𝑖 along the 4 measurement directions 

The CHSH measurement operator is then : 𝑪𝑯𝑺𝑯 = 𝝈𝐴⨂𝝈𝐵 + 𝝈𝐴⨂𝝈𝐵′ + 𝝈𝐴′⨂𝝈𝐵 − 𝝈𝐴′⨂𝝈𝐵′

Considering the projection operators, each term transforms as: 𝝈𝐴⨂𝝈𝐵 = 𝕀 − 2𝜫𝑨 ⨂ 𝕀− 2𝜫𝑩
replacing and simplifying :

𝑪𝑯𝑺𝑯 = 2𝕀 − 4𝜫𝑨⨂𝕀 − 4𝕀⨂𝜫𝑩 + 4𝜫𝑨⨂𝜫𝑩 + 4𝜫𝑨⨂𝜫𝑩′ + 4𝜫𝑨′⨂𝜫𝑩 − 4𝜫𝑨′⨂𝜫𝑩′

In this expression one recognizes the logical projection and conjunction operators

To evaluate the inequality one averages this operator:  𝜓|𝑪𝑯𝑺𝑯  |𝜓

By averaging the operator  𝓕 =
1

4
𝑪𝑯𝑺𝑯−

𝕀

2
one obtains the Fine inequality for probabilities:

ℱ = 𝑃 A ∧ B + 𝑃 A ∧ B′ + 𝑃 A′ ∧ B − 𝑃 A′ ∧ B′ − 𝑃 A − 𝑃 A classically −1 ≤ ℱ ≤ 0

(equivalent to the classical CHSH BI −2 ≤ 𝐶𝐻𝑆𝐻 ≤ +2) for entangled states one has violation of these inequalities.

George Boole already discussed these probability inequalities in 1854 as stated bay Itamar Pitowsky in [*]
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V1 V2
Vref

The strange propositions of Diederik Aerts [*]
D. Aerts in 1982 proposed a macroscopic experiment that violates the 
CHSH Bell Inequality maximally.

Two vessels V1 and V2 with a capacity of 8 liters each, linked through a 
tube with a capacity of 16 liters (at most the system holds 32 liters).
The vessel Vref used to siphon water from the V1 and V2 basins. 

4 experiments :
Experiment α: answer to: is Vref > 10 L ?
Experiment β: answer to: are V1 or V2 > 6L ?
Experiment γ: answer to: is the water drinkable ?
Experiment δ: answer to: is the water transparent ?

outcomes:  +1 if the answer is YES and  −1 if the answer is NO

Results of correlated experiments:
𝑋𝛼,𝛽 = −1 , 𝑋𝛼,𝛾 = +1 , 𝑋𝛿,𝛽 = +1 and  𝑋𝛿,𝛾 = +1.

Taking the sum for the CHSH Bell parameter:

𝑆 = 𝑋𝛼,𝛽 − 𝑋𝛼,𝛾 + 𝑋𝛿,𝛽 + 𝑋𝛿,𝛾 = 4
Bell's inequality is therefore maximally violated!
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In 2012 we undertook the experiment in Supélec
using 2 flower pots and a 32 m water tube.

students: Vincent DUMOULIN & Yves SOURRILLE
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[*] D. Aerts, Example of a macroscopical situation that
violates Bell inequalities, Lett. Nuovo Cimento 34, 107
(1982)



The PR Box [*]
The well known nonlocal PR box correlates outputs (𝑎, 𝑏) to 
inputs (𝑥, 𝑦) in a two-party correlation by means of a logical 
constraint equation:

a⊕ b ≡ x ∧ y

This box violates the CHSH Bell Inequality (BI) maximally
The measurement outcomes (𝐴, 𝐵) , Alice and Bob, give the 
values ±1.

We define the joint mean value for the possible outcomes of 
the box as a function of the marginal probabilities [3]:

𝐶𝑥,𝑦 =  𝑎,𝑏𝑃(𝑎, 𝑏|a ⊕ b ≡ x ∧ y ) ⋅ 𝐴(𝑎) ⋅ 𝐵(𝑏)

where  𝐴 𝑎 = 1 − 2𝑎 = (−1)𝑎 ;  𝐵 𝑏 = 1 − 2𝑏 = (−1)𝑏

The Bell parameter considering the four input possibilities is:

𝑆 = 𝐶00 + 𝐶01 + 𝐶10 − 𝐶11 = 4

39

a ⊕ b ≡ x ∧ y

Y

B(b)A(a)

X

𝐶𝑥𝑦 = 𝑃(0,0|𝑥, 𝑦)
.
(+1)

.
(+1) + 𝑃(0,1|𝑥, 𝑦)

.
(+1)

.
(−1) +

𝑃 1,0 𝑥, 𝑦
.
−1
.
+1 + 𝑃 1,1 𝑥, 𝑦

.
−1
.
−1

𝐶00 = 𝐶01 = 𝐶10 =
1

2
+ 0 + 0 +

1

2
= +1

𝐶11 = 0 −
1

2
−
1

2
+ 0 = −1
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[*] Popescu, S., Rohrlich, D. Quantum nonlocality as an axiom. Found Phys 
24, 379–385 (1994)



Analysing the PR Box Bell Inequality by Eigenlogic

One uses the logical expression directly in an operator form using  the following logical identity:

a⊕ b ≡ x ∧ y ↔ a⊕ b⊕ x ∧ y

Using the involution properties: −1 a⊕b⊕x∧y = − −1 a⊕b⊕x∧y = − −1 a −1 b −1 x∧y

One can then express the operator 𝑮PR with eigenvalues (truth values) : − −1 𝑎 −1 𝑏 −1 𝑥𝑦

The corresponding projective operator is: 𝑭PR =
1

2
𝕀 − 𝑮PR

The BI value is obtained by averaging the operator 𝑮PR on the possible situations given by the logical 
constraint a⊕ b ≡ x ∧ y that is to the 8 cases out of 16 where the truth value of 𝑭PR is 1

Considering all the possible cases for 𝐶𝑥,𝑦 one gets the maximum Bell parameter:

using of the idempotence property: 𝑭PR
2 = 𝑭PR

𝑆 = −
8

16
Tr 𝑭PR ∙ 𝑮PR = −

1

2
Tr 𝑭PR 𝕀 − 2𝑭PR =

1

2
Tr 𝑭PR =

8

2
= 4
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Generalising the PR Box for all logical bipartite constraints
In total 16 × 16 = 256 logical equations.

The PR box corresponds to : a⊕ b ≡ x ∧ y (in the table 𝑓6(a, b) ≡ 𝑓8(x, y))
BI violation 𝑆 = 4 for other 15 no-signaling nonlocal boxes (orange)

Other 32 nonlocal boxes (green) are signaling and violate BI with

𝑆 = 10
3
≈ 3.33 > 2 2 > 2

case for: a  b ≡ x  y (in the table 𝑓14(a, b) ≡ 𝑓8(x, y))
also exceeding the quantum limit.

41

𝑓𝑛
out a, b = 𝑓𝑚

in(x, y)

𝑌

𝐵(𝑏)𝐴(𝑎)

𝑋
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Quantum Computing and Eigenlogic
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Quantum Computing

43

A quantum computer is one whose operation exploits certain very special 
transformations of its internal state.

For computer scientists the most striking thing about quantum 
computation is that a quantum computer can be vastly more efficient than 
anything ever imagined in the classical theory of computational 
complexity, for certain computational tasks of considerable practical 
interest.

The time it takes the quantum computer to accomplish such tasks scales 
up much more slowly with the size of the input than it does in any classical 
computer.



Zeno Toffano  : “Adapting Logic to Physics”    Workshop – “modélidsation quantique” – ISC Paris – 25-10-2021



Eigenlogic and quantum gates

44

Eigenlogic makes a correspondence between quantum control logic (David Deutsch’s quantum logical gate paradigm)
and ordinary propositional logic.
It is known that the 2-quibit control-phase gate 𝑪𝒁 in association with 1-quibit gates is a universal gate set.

In Eigenlogic the 𝑪𝒁 gate corresponds to the 𝑨𝑵𝑫 involution gate 𝑪𝒁 = 𝑮∧ = 𝑑𝑖𝑎𝑔 1,1,1, −1 = 𝑪𝒁

The XOR gate (not universal) is given by the Kronecker product: 𝑮⊕ = 𝑑𝑖𝑎𝑔 1,−1,−1, 1 = 𝒁⊗ 𝒁

The well-known control-not CNOT gate 𝑪 can be expressed using the Pauli matrices 𝝈𝑧 = 𝒁 and 𝝈𝑥 = 𝑿

from the seed operators :𝜫 =  |1  1| =
1

2
(𝕀 − 𝒁) and𝜫+ =  | +  +| =

1

2
(𝕀 − 𝑿)

using the Eigenlogic involution conjunction operator (in the alphabet {+1, −1}) :

𝑪 = −1 𝜫⊗𝜫+ = 𝕀 − 2 𝜫⊗𝜫+ =
1

2
𝕀 + 𝒁⊗ 𝕀 + 𝕀⊗𝑿 − 𝒁⊗𝑿 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

Z

Z

U V

𝑮⊕ = 𝑼.𝑽

Z

𝑪𝒁 = 𝑮∧ = ½(𝑰 + 𝑼 + 𝑽 − 𝑼.𝑽)

Eigenlogic
quantum 

gates
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 |𝑥  |𝑥

 |𝑦  |𝑥 ⊕ 𝑦

𝐂𝐍𝐎𝐓 = 𝑪 = ½(𝑰 + 𝑼 + 𝑽𝑥 − 𝑼.𝑽𝑥)

target bit

control bit



For a general 2-qubit state:  |𝜓 = 𝛼  |00 + 𝛽  |01 + 𝛾  |10 + 𝛿  |11

Simple way to characterize entanglement by the quantum concurrence: C = 2 𝛼𝛿 − 𝛽𝛾
C = 0 not entangled      ;  0 < C ≤ 0 entangled    ; C = 1 fully entangled

Entangling gate : the control-phase gate 𝑪𝑍 = 𝑮∧

using  | + + =  | + ⊗  | + =
1

2
 (|0 +  |1 ) ⊗

1

2
 (|0 +  |1 ) =

1

2
 (|00 +  |01 +  |10 +  |11 )

the concurrence of  | + + is:                2
1

2

1

2
−
1

2

1

2
= 0 the state is not entangled

Let’s apply  𝑪𝑍  | + + =

1 0 0
0 1 0
0 0 1

0
0
0

0 0 0 −1

1

2

1
1
1
1

=
1

2

1
1
1
−1

=
1

2
 (|00 +  |01 +  |10 −  |11 ) =

1

2
 (|0 + −  |1 − )

the resulting state is one of the Bell states in the basis  |𝑧, 𝑥 ) 
called also a cluster state used in measurement based  quantum computing

The concurrence 𝑪𝑍  | + + is:                2
1

2

−1

2
−
1

2

1

2
= 1 the state is fully entangled
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Control gates and quantum entanglement concurrence
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logical universality and quantum entanglement
In binary propositional logic the following set when combined with negation (NOT) constitutes 

a universal set of 8 logical connectives: AND, OR, NOR, NAND, ⇒ , ⇏, ⇐ , ⇍
one observes that they possess an odd number of True and False truth values

the other 8 connectives are not: P, Q, ¬P, ¬Q, ≡ , XOR, F ,T
one observes that they possess an even number of True and False truth values

For involution logical operators 𝑮 with eigenvalues {+1,-1}
the universal logical gates correspond to 8 operators with an odd number of  eigenvalues +1 and −1
these are all entangling gates 
the 8 other logical operators are separable (not netngled) and not universal.

This states clearly the correspondence between logical universality and entanglement.
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P Q F NOR P ⇍Q ¬P P ⇏Q ¬Q XOR NAND AND P ≡ Q Q P ⇒ Q P Q ⇒ P OR T

+ + + − + − + − + − + − + − + − + −

+ − + + − − − + − − + + − − + + − −

− + + + + + + − − − + + + + − − − −

− − + + + + + + + + − − − − − − − −
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building the 3-qubit Toffoli universal quantum gate

The 3-qubit Toffoli (double-CNOT) gate 𝑻𝑶 is a universal reversible logic quantum gate
directly in Eigenlogic form

𝑻𝑶 = 𝕀 − 2 𝜫𝑍⊗𝜫𝑍⊗𝜫𝑿 =
1

4
(3 𝕀 + 𝒁2 + 𝒁1 + 𝑿0 − 𝒁2 ⋅ 𝒁1 − 𝒁2 ⋅ 𝑿0 − 𝒁1 ⋅ 𝑿0 + 𝒁2 ⋅ 𝒁1 ⋅ 𝑿0)

Can be put in exponential form using the Householder transform

𝑻𝑶 = 𝑒
+𝑖
𝜋

8𝑒
−𝑖
𝜋

8
𝒁1𝑒
−𝑖
𝜋

8
𝒁2𝑒
−𝑖
𝜋

8
𝑿0𝑒
𝑖
𝜋

8
𝒁2⋅𝒁1𝑒

𝑖
𝜋

8
𝒁2⋅𝑿0𝑒

𝑖
𝜋

8
⋅𝒁1⋅𝑿0𝑒

−𝑖
𝜋

8
𝒁2⋅𝒁1⋅𝑿0

Alternative method using T gates [*]: 𝑻 = 𝒁
1

4 = 𝑒𝑖
𝜋

8𝑒−𝑖
𝜋

8
𝒁 = diag 1, 𝑒𝑖

𝜋

4

using the Reed-Muller form: 𝑪𝑪𝒁 = 𝑻0 ⋅ 𝑻1 ⋅ 𝑻2 ⋅ (𝑻𝑥⊕𝑦)
† ⋅ (𝑻𝑥⊕𝑧)

† ⋅ (𝑻𝑦⊕𝑧)
† ⋅ (𝑻𝑥⊕𝑦⊕𝑧)

using the Hadamard gate extension one has again the Toffoli gate : 𝑻𝑶 = 𝑯0 ⋅ 𝑪𝑪𝒁 ⋅ 𝑯0

[*] Selinger, P., Quantum circuits of T-depth one, Phys. Rev. A, 87, 252–259, (2013)
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 |𝑥  |𝑥

 |𝑧  |𝑧 ⊕ 𝑥 ∧ 𝑦

 |𝑦  |𝑦 𝑻𝑶 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
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The Deutsch algorithm is one of the first quantum algorithms more efficient than its classical 
counterpart.

Deutsch algorithm [*]

x f00(x) f01(x) f10(x) f11(x) 
0 
1 

0 
0 

0 
1 

1 
0 

1 
1 

 

 

constant constantbalanced balanced

The algorithm measurement is made on the upper qubit of the following circuit

The answer to the question: is the logical function 𝑓 𝑥 constant or balanced? 
can be performed by a quantum computer in one step.
(the classic treatment requires two steps.) 
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𝑼𝑓:  |𝑥  |𝑦 →  |𝑥  |𝑦⨁𝑓(𝑥)

= −1 𝑓(0)  |𝑓(0)⨁𝑓(1)  |1
= −1 𝑓(0)  |0  |1 if constant
= −1 𝑓(0)  |1  |1 if balanced

𝑼𝑓

𝑯 𝑯

𝑯 𝑯 |1

 |0  | +

 | −
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[*] D. Deutsch, Quantum theory, the 
Church-Turing principle and the 
universal quantum computer, Proc. 
R. Soc. A, 400, 97–117, (1985)



Expressing the quantum oracle circuit in Eigenlogic
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In quantum control logic Boolean logical functions can be 
calculated by means of a quantum oracle 𝑼𝑓:

Particular cases are:
the 2-qubit CNOT 𝑪
the 3-qubit Toffoli gate 𝑻𝑶 (𝑓 is the AND function)

 |𝒙  |𝒙

 |𝑏  |𝑏 ⊕ 𝑓(𝒙)

𝑼𝑓

control bit

The logical function 𝑓 is represented by the projective Eignelogic operator 𝑭

The control bit corresponds to the seed projection operator 𝜫+ =  | +  +| =
1

2
(𝕀 − 𝑿) (in the  |𝑥 basis).

The oracle is then simply expressed in Eigenlogic as :  𝑼𝑓 = −1
𝑭⨂𝜫+ = 𝕀 − 2𝑭⨂𝜫+

In the case of a one bit Boolean function 𝑓(𝑥) : 𝑭 = 𝑓 0 𝜫0 + 𝑓 1 𝜫1 = 𝑓 0 𝕀 − 𝜫 + 𝑓 1

by developing one obtains another expression for the oracle : 𝑼𝑓 = 𝜫0⨂𝑿
𝑓 0 +𝜫1⨂𝑿

𝑓 1

the Deutsch algorithm result obtained by applying the oracle on :  | +  | − =
1

2
(  |0 +  |1 )

1

2
 (|0 −  |1 )

𝑼𝑓  | +  | − =
1

2
 |0 −1 𝑓(0)  | − +

1

2
 |1 −1 𝑓(1)  | −

for constant 𝑓 0 = 𝑓(1) 𝑼𝑓  | +  | − = ±  | +  | − and for  balanced    𝑓 0 ≠ 𝑓(1) 𝑼𝑓  | +  | − = ±  | −  | −



Grover's search algorithm [*]

n-qubit

1-qubit

We consider a “black box” (oracle𝐔𝒇)

Having for the value 𝑥0 the property :
𝑓 𝑥0 = 1 and   𝑓 𝑥 = 0 for 𝑥 ≠ 𝑥0

Problem: finding the value  x0 in a 
large database with the fewest queries
possible.

[*] L. K. Grover. A fast quantum mechanical algorithm 
for database search, Proceedings, 28th Annual ACM 
Symp. on the Theory of Computing, p. 212, (1996)

Classical query: complexity: 𝑶(𝐞𝐱𝐩(𝒏))

Grover quantum query: complexity:  𝑶(𝐞𝐱𝐩( 𝒏))
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Grover algorithm and first-order-logic
The Grover search algorithm looks for an element 𝑎 (here  |𝑎2𝑎1𝑎0 =  |111 ) satisfying the property 𝑃 (oracle) can 
be interpreted as an existential logical quantifier ∃,
becomes the predicate proposition in first-order-logic: ∃𝑎 𝑃 𝑎

The Grover amplification gate corresponds to an Eigenlogic disjunction operator in the X system (in the circuit we 
have 𝑮NOR = −𝑮OR). The oracle (phase) is here a double control Z gate (Eigenlogic 3-input AND −1 𝜫⨂𝜫⨂𝜫).

∃𝑎 𝑃 𝑎 decomposes, using Skolemization for finite systems

∃𝑎 ⟺ 𝑎1 ∨ 𝑎2 ∨ ⋯∨ 𝑎𝑁

and   

∀𝑎 ⟺ 𝑎1 ∧ 𝑎2 ∧ ⋯∧ 𝑎𝑁

¬ 𝑃𝑋 ∨ 𝑄𝑋∨ 𝑅𝑋
𝑃𝑍 ∧ 𝑄𝑍 ∧ 𝑅𝑍

Z

H

H

H

H

H

H

X

X

X

X

X

XZ

H

H

H

|  0

|  0

|  0

init Grover amplification gateoracle gate

Eigenlogic NORX double CZ marking |  111
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Quantum Robot
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Quantum robots: Paul Benioff

Paul Benioff was the first to propose the idea of a quantum Turing machine in 1980 [1].

Benioff also gave the theoretical principle of a quantum robot in 1988 [2] as a first step towards a 
quantum mechanical description of systems that are aware of their environment and make decisions.

Currently  a “Quantum Robotics” group has been created and a book has been published in 2017 [3].

“Quantum Robotics is an emerging engineering and scientific research discipline that explores the 
application of quantum mechanics, quantum computing, quantum algorithms, and related fields to 
robotics. These developments are expected to impact the technical capability for robots to sense, 
plan, learn, and act in a dynamic environment.”

53

[2] Benioff, P., 1988, Quantum Robots and Environments, Physical Review A, Vol. 58, No.2, pp. 893–904

[3] Tandon, P., Lam, S., Shih, B., Mehta, T., Mitev, A., Ong, Z., Quantum Robotics - A Primer on Current Science and Future Perspectives, Morgan 
& Claypool. (2017)

[1] Benioff, P., 1980, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented 
by Turing machines, J. of Statistical Phys., Vol. 22, (1980)
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Braitenberg Vehicles (BV)

Valentino Braitenberg was a Cyberneticist. In his book Vehicles [1] various thought 
experiments using simple machines consisting in sensors, motors and wheels. 
Sensors detect light produced by surrounding sources.

The sensors can be connected in different configurations of combinations to the 
wheels. Simple changes in configuration can lead to complex and surprising results 
in the agent behavior.

We designed fuzzy logic quantum-like Braitenberg vehicles [2].

The control is based on “Eigenlogic”.

The goal is to test the multiple combinations of logical gates used in the control of 
BV by analyzing their complex behavior.

54

[1] Braitenberg, V. 1986, Vehicles - Experiments in Synthetic Psychology. MIT Press; Cambridge USA

[2] Z. Toffano, F. Dubois, Quantum eigenlogic observables applied to the study of fuzzy behaviour of Braitenberg vehicle quantum robots, 
Kybernetes, (2019)
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Vehicle input-output structure [*]

The computational block is composed of logic operators (matrices) designed with the quantum-
like Eigenlogic method. The control of the two-wheel motors (ML, MR), responds to signals from 
the two light sensors (SL, SR).

55

the input state vector representing the light intensity on SL and SR is:  |𝜓 =  |𝜙𝑆𝐿 ⨂  |𝜙𝑆𝑅

The fuzzy quantities for left and right wheel (WL, WR) control, are the mean values of the logical operators 
𝑭𝑳 and 𝑭𝑹 on the input compound state  |𝜓 :

𝜇𝐿 =  𝜓|𝑭𝑳  |𝜓 ,       𝜇𝑅 =  𝜓|𝑭𝑹  |𝜓

[*] Cunha R.A.F., Sharma N., Toffano Z., Dubois F. Fuzzy Logic Behavior of Quantum-Controlled Braitenberg Vehicle Agents. In: Coecke 
B., Lambert-Mogiliansky A. (eds) Quantum Interaction. QI 2018. Lecture Notes in Computer Science, vol 11690. Springer, Cham. (2019) 
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basic BV “classic” emotions using Eigenlogic

Fear (BV-2a) (𝑭𝐿 = 𝑨 and 𝑭𝑅 = 𝑩): turns away 
from the light if one sensor is activated more than 
the other. If both are equal, the light source is 
“attacked”.

Aggression (BV-2b) (𝑭𝐿 = 𝑩 and 𝑭𝑅 = 𝑨): when the 
light source is placed near either sensor, the vehicle 
will face it and go toward it.

Love (BV-3a) (𝑭𝐿 = 𝕀 − 𝑨 and 𝑭𝑅 = 𝕀 − 𝑩): will 
go until it finds a light source, then slows to a stop. 
If one side sees light, the vehicle turns in the 
direction of the light.

Exploration (BV-3b) (𝑭𝐿 = 𝕀 − 𝑩 and 𝑭𝑅 = 𝕀 −
𝑨): will go to the nearby light source, keeps an eye 

open and will sail to other stronger sources, given 
the chance.
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BV-2a BV-2b

BV-3a

BV-3b

©  Braitenberg [*]
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Quantum like emotions: worship , doubt

Worship: (𝑭𝐿 =
1

2
1 − 𝑯⨂𝑯 and 𝑭𝑅 = 𝑩): one of the 

control logical operator is the projector version of the 
double-Hadamard qubit gate 𝑯.

The vehicle keeps rotating around its own center in the 
absence of light. In the presence of light, it goes towards the 
source and starts to rotate around the source (or multiple 
sources when they are close together).

Doubt: (𝑭𝐿 = 𝑩 ⇏ 𝑨 and 𝑭𝑅 = 𝑭𝑋𝑂𝑅 =
1

2
1 − 𝒁⨂𝒁 ): here, 

one of the control logical operator is XOR (projector version 
of the double- 𝒁 qubit gate).

This operator provides a property that makes the vehicle 
turn around in circles, regardless of the presence or absence 
of stimuli. 
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quantum wheel of emotions

The concept of “wheel of emotions” introduced by Plutchik et al. 
[*] allows a continuous set of emotional states.

A small perturbation in the angle of the input state will 
correspond to small changes in the vehicle’s behavior.

The emotions presented on the wheel shown are an example 
corresponding to the following 𝐿 | 𝑅 logical control operators:

• (Anger-Aggressive) 𝐵 | 𝐴
• (Passion) 𝐵 ⇏ 𝐴 |𝐴 ⇏ 𝐵
• (Love)  𝐴 |  𝐵
• (Interest-Explore)  𝐵 |  𝐴
• (Curiosity) 𝐴 ⇏ 𝐵 | 𝐵 ⇏ 𝐴
• (Distraction) 𝐴 ⇏ 𝐵 | 𝑋𝑂𝑅
• (Apprehension) 𝐵 ⇏ 𝐴 | 𝑋𝑂𝑅
• (Worship) 𝑯⨂𝑯 | 𝐵
• (Sadness) 𝐶𝑁𝑂𝑇 | 𝐶𝑁𝑂𝑇
• (Fear) 𝐴 | 𝐵
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[*] Plutchik, R., 2001, The Nature of 
Emotions, Amercian Scientist, July-August, 

Vol. 89, N° 4, pp. 334-350 
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thank -you
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drawings by Maciek Albrecht © Braitenberg, V. 1986, Vehicles: Experiments in Synthetic, Psychology. MIT Press
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