Modélisation Quantique


La modélisation quantique est une discipline émergente qui applique les idées, les méthodes et les modèles développés dans la physique quantique pour les appliquer dans de nouveaux domaines des sciences humaines et cognitives. En effet, le formalisme mathématique de la théorie quantique peut être transposé à d'autres domaines comme l'économie, l'interaction sociale, la psychologie, l'intelligence artificielle, la linguistique, la recherche d'information, les sciences sociales, la biologie, l'apprentissage automatique, la logique, etc. De plus, beaucoup de propriétés clés des systèmes quantiques comme la non-commutativité des mesures, l'indétermination, la non-séparabilité, la présence d'inégalités probabilistes non classiques, peuvent être mises en évidence dans les systèmes évoqués plus haut.

Prochaine réunion : lundi 15 décembre 2025
  à 15h30 heures (heure de Paris)
La séance se tiendra en ligne ; le lien est transmis sur simple demande
Michael Schnabel
University of Chicago, Illinois, USA
Question Order Effects in Quantum Cognition:
The Quantum-Question Equality for More than Two Observables

Author's summary
In quantum mechanics, when two observables do not commute, the joint probability distribution is not well-defined, as the probabilities depend on the order of measurements. However, the conditional probabilities for different measurement orders are constrained by the projection postulates of quantum theory. The Quantum-Question (QQ) Equality, formulated by Wang and Busemeyer [1], provides a non-parametric prediction for the pairwise probabilities of binary questions represented by two non-commutative observables and their associated projection operators. The QQ Equality has been central to quantum cognition research to test whether order effects in survey data can be explained as quantum-like interference, which has received strong empirical support [2]. In this work, I formulate QQ Equalities that extend beyond pairwise comparisons, accommodating situations with N ≥ 3 binary questions under the assumption that measurements are represented by idempotent projection operators. These results might also be applicable to low-dimensional discrete quantum systems and offer a generalizable framework for understanding order effects in cognitive decision-making across various domains of questionnaire design, experimental psychology, and behavioral economics.
References
[1] Wang, Z. and Busemeyer, J.R.: A quantum question order model supported by empirical tests of an a priori and precise prediction. Topics in Cognitive Science, 5(4), 689–710 (2013)
[2] Wang, Z., Solloway, T., Shiffrin, R.M., and Busemeyer, J.R.: Context effects produced by question orders reveal quantum nature of human judgments. Proceedings of the National Academy of Sciences, 111(26), 9431–9436 (2014)

Animation :   François Dubois, francois - dot - dubois - at - lecnam - dot - net,
                      Zeno Toffano, zeno - dot - toffano - at - centrale supelec - dot - fr
mise à jour : 5 novembre 2025